C/C++ VS PHP AES128_ECB_PKCS5Padding
C/C++ VS PHP AES128_ECB_PKCS5Padding
資料來源: https://github.com/HUTOYP/AES128_ECB_PKCS5Padding
https://blog.51cto.com/laok8/1909479
https://github.com/yekq/Android_JNI_AES_128_ECB_PKCS5Padding
https://github.com/shoneworn/JNI_AES-ECB-PKCS5Padding
GITHUB: https://github.com/jash-git/Jash-good-idea-20220101-001/tree/main/C%20VS%20PHP%20AES128_ECB_PKCS5Padding
實測可以正確結果:
Security::encrypt:IDcqXMG9R6tp5Vqi1RO92A== Security::decrypt:example ------ Hello world! IDcqXMG9R6tp5Vqi1RO92A==,24 7,example Process returned 0 (0x0) execution time : 0.014 s Press any key to continue.
PHP
<?php
class Security {
public static function encrypt($input, $key) {
$size = mcrypt_get_block_size(MCRYPT_RIJNDAEL_128, MCRYPT_MODE_ECB);
$input = Security::pkcs5_pad($input, $size);
$td = mcrypt_module_open(MCRYPT_RIJNDAEL_128, '', MCRYPT_MODE_ECB, '');
$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size($td), MCRYPT_RAND);
mcrypt_generic_init($td, $key, $iv);
$data = mcrypt_generic($td, $input);
mcrypt_generic_deinit($td);
mcrypt_module_close($td);
$data = base64_encode($data);
return $data;
}
private static function pkcs5_pad ($text, $blocksize) {
$pad = $blocksize - (strlen($text) % $blocksize);
return $text . str_repeat(chr($pad), $pad);
}
public static function decrypt($sStr, $sKey) {
$decrypted= mcrypt_decrypt(
MCRYPT_RIJNDAEL_128,
$sKey,
base64_decode($sStr),
MCRYPT_MODE_ECB
);
$dec_s = strlen($decrypted);
$padding = ord($decrypted[$dec_s-1]);
$decrypted = substr($decrypted, 0, -$padding);
return $decrypted;
}
}
$key = "1234567891234567";
$data = "example";
$value = Security::encrypt($data , $key );
echo "Security::encrypt:".$value.'<br/>';
echo "Security::decrypt:".Security::decrypt($value, $key );
?>
C – aes.c
/*
This is an implementation of the AES128 algorithm, specifically ECB and CBC mode.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include "aes.h"
#define JNI_TRUE 1
#define JNI_FALSE 0
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
// The number of 32 bit words in a key.
#define Nk 4
// Key length in bytes [128 bit]
#define KEYLEN 16
// The number of rounds in AES Cipher.
#define Nr 10
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
static state_t* state;
// The array that stores the round keys.
static uint8_t RoundKey[176];
// The Key input to the AES Program
static const uint8_t* Key;
#if defined(CBC) && CBC
// Initial Vector used only for CBC mode
static uint8_t* Iv;
#endif
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] =
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
static const uint8_t Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(void)
{
uint32_t i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for(i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for(; (i < (Nb * (Nr + 1))); ++i)
{
for(j = 0; j < 4; ++j)
{
tempa[j]=RoundKey[(i-1) * 4 + j];
}
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round)
{
uint8_t i,j;
for(i=0;i<4;++i)
{
for(j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(void)
{
uint8_t i, j;
for(i = 0; i < 4; ++i)
{
for(j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(void)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(void)
{
uint8_t i;
uint8_t Tmp,Tm,t;
for(i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(void)
{
int i;
uint8_t a,b,c,d;
for(i=0;i<4;++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(void)
{
uint8_t i,j;
for(i=0;i<4;++i)
{
for(j=0;j<4;++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(void)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp=(*state)[3][1];
(*state)[3][1]=(*state)[2][1];
(*state)[2][1]=(*state)[1][1];
(*state)[1][1]=(*state)[0][1];
(*state)[0][1]=temp;
// Rotate second row 2 columns to right
temp=(*state)[0][2];
(*state)[0][2]=(*state)[2][2];
(*state)[2][2]=temp;
temp=(*state)[1][2];
(*state)[1][2]=(*state)[3][2];
(*state)[3][2]=temp;
// Rotate third row 3 columns to right
temp=(*state)[0][3];
(*state)[0][3]=(*state)[1][3];
(*state)[1][3]=(*state)[2][3];
(*state)[2][3]=(*state)[3][3];
(*state)[3][3]=temp;
}
// Cipher is the main function that encrypts the PlainText.
static void Cipher(void)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round = 1; round < Nr; ++round)
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey(round);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes();
ShiftRows();
AddRoundKey(Nr);
}
static void InvCipher(void)
{
uint8_t round=0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=Nr-1;round>0;round--)
{
InvShiftRows();
InvSubBytes();
AddRoundKey(round);
InvMixColumns();
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows();
InvSubBytes();
AddRoundKey(0);
}
static void BlockCopy(uint8_t* output, uint8_t* input)
{
uint8_t i;
for (i=0;i<KEYLEN;++i)
{
output[i] = input[i];
}
}
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && ECB
void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output)
{
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state = (state_t*)output;
Key = key;
KeyExpansion();
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher();
}
void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output)
{
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state = (state_t*)output;
// The KeyExpansion routine must be called before encryption.
Key = key;
KeyExpansion();
InvCipher();
}
/**
* 不定长加密,pkcs5padding
*/
char* AES_128_ECB_PKCS5Padding_Encrypt(const char *in, const uint8_t *key)
{
int inLength= (int) strlen(in);//输入的长度
int remainder = inLength % 16;
uint8_t *paddingInput;
int paddingInputLengt=0;
int group = inLength / 16;
int size = 16 * (group + 1);
paddingInput=(uint8_t*)malloc(size);
paddingInputLengt=size;
int dif = size - inLength;
int i;
for (i = 0; i < size; i++) {
if (i < inLength) {
paddingInput[i] = in[i];
} else {
if (remainder == 0) {
//刚好是16倍数,就填充16个16
paddingInput[i] = HEX[0];
} else { //如果不足16位 少多少位就补几个几 如:少4为就补4个4 以此类推
paddingInput[i] = HEX[dif];
}
}
}
int count=paddingInputLengt / 16;
//开始分段加密
char * out=(char*)malloc(paddingInputLengt);
for ( i = 0; i < count; ++i) {
AES128_ECB_encrypt(paddingInput+i*16, key, out+i*16);
}
char * base64En=b64_encode(out,paddingInputLengt);
//LOGE(base64En);
free(paddingInput);
free(out);
return base64En;
}
/**
* 不定长解密,pkcs5padding
*/
char * AES_128_ECB_PKCS5Padding_Decrypt(const char *in, const uint8_t* key)
{
//加密前:1
//key:1234567890abcdef
//加密后:qkrxxA9fIF636aITDRJhcg==
// in="m74nCuZkzK13anBQRDWeOw==";//123456
// in="qkrxxA9fIF636aITDRJhcg==";//1
// in="LuD5WoRRcHq1tuEWZQHLHwLexWUsAhX5OvafAJ8PbVg=";//abcdefghijklmnop
// in="+R99oRBuckos5mdUqQHHeoja4/HYqWtqTM3cgl+E0a3p5i7DoLeBpq/mVUfuEh5D1VRn4Wt4TzHazvz931WfiA==";//57yW56CB5Y6f55CGOuWwhjPkuKrlrZfoioLovazmjaLmiJA05Liq5a2X6IqC
// in="UUNc8Dh0OVZE9UyzJwWTSVkt3hgIxg0nfVHpSirRL3T1meUZDRUINWvoYfkcOEpL";//编码原理:将3个字节转换成4个字节
// in="Yrl8Sryq7Kpce4UWRfG3bBBYpzXv59Muj0wjkJYRHFb73CogeDRfQCXsjSfxTe0gibaf+f1FLekwow0f1W9stJy3q7CNOPzkSJVdCtyZvIxMxLwz9hyatUJnU4Nq6i2gkaiCZcwHuDtrAHpEoy1k0vudpWhGu2457iSc40Tqw4tQnxKX18DcKNG5/KPUM+A5Y9a3FxaAy84Turio78b+6A==";//{"Json解析":"支持格式化高亮折叠","支持XML转换":"支持XML转换Json,Json转XML","Json格式验证":"更详细准确的错误信息"}
//LOGE("输入:");
//LOGE(in);
uint8_t *inputDesBase64=b64_decode(in,strlen(in));
const size_t inputLength= (strlen(in) / 4) * 3;
uint8_t *out=malloc(inputLength);
memset(out,0,inputLength);
size_t count=inputLength/16;
if (count<=0)
{
count=1;
}
size_t i;
for ( i = 0; i < count; ++i) {
AES128_ECB_decrypt(inputDesBase64+i*16,key,out+i*16);
}
//去除结尾垃圾字符串 begin
int index = findPaddingIndex(out);
if(index==NULL)
{
return (char*)out;
}
if(index < strlen(out)){// if (index>strlen) will crash.
memset(out+index, '\0', strlen(out)-index);
}
//去除结尾垃圾字符串 end
//LOGE("解密结果:");
//LOGE(out);
free(inputDesBase64);
return (char *) out;
}
/**
* 查找结果中的一些 多余字符串
* @param str : 加密结果原文
* @return int : 垃圾字符串的开始位置
*/
int findPaddingIndex(uint8_t * str)
{
return (int)(strlen(str) - str[strlen(str) - 1]);
}
/**
*
* 这里干掉了CBC 相关代码 ,这块代码是一个AES的一个带有向量的算法
* 找寻这些代码 请移步 https://github.com/kokke/tiny-AES128-C
#if defined(CBC) && CBC
#endif // #if defined(CBC) && CBC
*/
#endif // #if defined(ECB) && ECB
C – aes.h
#ifndef AES_H_INCLUDED
#define AES_H_INCLUDED
//#include <android/log.h>
//#include <jni.h>
#include <stdlib.h>
#include <stdint.h>
#include "base64.h"
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES128 encryption in CBC-mode of operation and handles 0-padding.
// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
static const unsigned char HEX[16]={0x10,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f};
//__attribute__((section (".mytext")))
//static const uint8_t AES_KEY[]="1234567890abcdef";
#if defined(ECB) && ECB
void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
char* AES_128_ECB_PKCS5Padding_Encrypt(const char *in,const uint8_t *key);
char* AES_128_ECB_PKCS5Padding_Decrypt(const char *in, const uint8_t* key);
int findPaddingIndex(uint8_t * str);
#endif // #if defined(ECB) && ECB
/*
* CBC是向量模式 暂不采用
如果需要使用 ,请移步 https://github.com/kokke/tiny-AES128-C
#if defined(CBC) && CBC
#endif // #if defined(CBC) && CBC
*/
#endif // AES_H_INCLUDED
C – base64.c
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "base64.h"
char *
b64_encode (const unsigned char *src, size_t len) {
int i = 0;
int j = 0;
char *enc = NULL;
size_t size = 0;
unsigned char buf[4];
unsigned char tmp[3];
// alloc
enc = (char *) malloc(0);
if (NULL == enc) { return NULL; }
// parse until end of source
while (len--) {
// read up to 3 bytes at a time into `tmp'
tmp[i++] = *(src++);
// if 3 bytes read then encode into `buf'
if (3 == i) {
buf[0] = (tmp[0] & 0xfc) >> 2;
buf[1] = ((tmp[0] & 0x03) << 4) + ((tmp[1] & 0xf0) >> 4);
buf[2] = ((tmp[1] & 0x0f) << 2) + ((tmp[2] & 0xc0) >> 6);
buf[3] = tmp[2] & 0x3f;
// allocate 4 new byts for `enc` and
// then translate each encoded buffer
// part by index from the base 64 index table
// into `enc' unsigned char array
enc = (char *) realloc(enc, size + 4);
for (i = 0; i < 4; ++i) {
enc[size++] = b64_table[buf[i]];
}
// reset index
i = 0;
}
}
// remainder
if (i > 0) {
// fill `tmp' with `\0' at most 3 times
for (j = i; j < 3; ++j) {
tmp[j] = '\0';
}
// perform same codec as above
buf[0] = (tmp[0] & 0xfc) >> 2;
buf[1] = ((tmp[0] & 0x03) << 4) + ((tmp[1] & 0xf0) >> 4);
buf[2] = ((tmp[1] & 0x0f) << 2) + ((tmp[2] & 0xc0) >> 6);
buf[3] = tmp[2] & 0x3f;
// perform same write to `enc` with new allocation
for (j = 0; (j < i + 1); ++j) {
enc = (char *) realloc(enc, size + 1);
enc[size++] = b64_table[buf[j]];
}
// while there is still a remainder
// append `=' to `enc'
while ((i++ < 3)) {
enc = (char *) realloc(enc, size + 1);
enc[size++] = '=';
}
}
// Make sure we have enough space to add '\0' character at end.
enc = (char *) realloc(enc, size + 1);
enc[size] = '\0';
return enc;
}
unsigned char *
b64_decode(const char *src, size_t len) {
return b64_decode_ex(src, len, NULL);
}
unsigned char *
b64_decode_ex(const char *src, size_t len, size_t *decsize) {
int i = 0;
int j = 0;
int l = 0;
size_t size = 0;
unsigned char *dec = NULL;
unsigned char buf[3];
unsigned char tmp[4];
// alloc
dec = (unsigned char *) malloc(0);
if (NULL == dec) { return NULL; }
// parse until end of source
while (len--) {
// break if char is `=' or not base64 char
if ('=' == src[j]) { break; }
if (!(isalnum(src[j]) || '+' == src[j] || '/' == src[j])) { break; }
// read up to 4 bytes at a time into `tmp'
tmp[i++] = src[j++];
// if 4 bytes read then decode into `buf'
if (4 == i) {
// translate values in `tmp' from table
for (i = 0; i < 4; ++i) {
// find translation char in `b64_table'
for (l = 0; l < 64; ++l) {
if (tmp[i] == b64_table[l]) {
tmp[i] = l;
break;
}
}
}
// decode
buf[0] = (tmp[0] << 2) + ((tmp[1] & 0x30) >> 4);
buf[1] = ((tmp[1] & 0xf) << 4) + ((tmp[2] & 0x3c) >> 2);
buf[2] = ((tmp[2] & 0x3) << 6) + tmp[3];
// write decoded buffer to `dec'
dec = (unsigned char *) realloc(dec, size + 3);
for (i = 0; i < 3; ++i) {
dec[size++] = buf[i];
}
// reset
i = 0;
}
}
// remainder
if (i > 0) {
// fill `tmp' with `\0' at most 4 times
for (j = i; j < 4; ++j) {
tmp[j] = '\0';
}
// translate remainder
for (j = 0; j < 4; ++j) {
// find translation char in `b64_table'
for (l = 0; l < 64; ++l) {
if (tmp[j] == b64_table[l]) {
tmp[j] = l;
break;
}
}
}
// decode remainder
buf[0] = (tmp[0] << 2) + ((tmp[1] & 0x30) >> 4);
buf[1] = ((tmp[1] & 0xf) << 4) + ((tmp[2] & 0x3c) >> 2);
buf[2] = ((tmp[2] & 0x3) << 6) + tmp[3];
// write remainer decoded buffer to `dec'
dec = (unsigned char *) realloc(dec, size + (i - 1));
for (j = 0; (j < i - 1); ++j) {
dec[size++] = buf[j];
}
}
// Make sure we have enough space to add '\0' character at end.
dec = (unsigned char *) realloc(dec, size + 1);
dec[size] = '\0';
// Return back the size of decoded string if demanded.
if (decsize != NULL) *decsize = size;
return dec;
}
C – base64.h
#ifndef BASE64_H_INCLUDED
#define BASE64_H_INCLUDED
/**
* Base64 index table.
*/
static const char b64_table[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '+', '/'
};
/**
* Encode `unsigned char *' source with `size_t' size.
* Returns a `char *' base64 encoded string.
*/
char * b64_encode (const unsigned char *, size_t);
/**
* Dencode `char *' source with `size_t' size.
* Returns a `unsigned char *' base64 decoded string.
*/
unsigned char * b64_decode (const char *, size_t);
/**
* Dencode `char *' source with `size_t' size.
* Returns a `unsigned char *' base64 decoded string + size of decoded string.
*/
unsigned char * b64_decode_ex (const char *, size_t, size_t *);
#endif // BASE64_H_INCLUDED
C – main.c
#include <stdio.h>
#include <stdlib.h>
#include "base64.h"
#include "aes.h"
int main()
{
printf("Hello world!\n");
uint8_t AES_KEY[]="1234567891234567";
char *data = "example";
char *OutPut01 = AES_128_ECB_PKCS5Padding_Encrypt(data, AES_KEY);
printf("%s,%d\n",OutPut01,strlen(OutPut01));
char *data01 = "IDcqXMG9R6tp5Vqi1RO92A==";
char *OutPut02 = AES_128_ECB_PKCS5Padding_Decrypt(data01,AES_KEY);
printf("%d,%s\n",strlen(OutPut02),OutPut02);
return 0;
}
3 thoughts on “C/C++ VS PHP AES128_ECB_PKCS5Padding”
PHP 的程式有使用 USBWebserver_V86 測試確定會動
C/C++的程式有使用 Code::Blocks 測試確定會動
PHP7.1废弃加密方法替换方案
https://segmentfault.com/a/1190000010816852
首先,我们来看一下PHP官方网站的备注。
mcrypt_encrypt
(PHP 4 >= 4.0.2, PHP 5, PHP 7)
mcrypt_encrypt — 使用给定参数加密明文
注意,下面还有一个爆炸点:
Warning
This function has been DEPRECATED as of PHP 7.1.0. Relying on this function is highly discouraged.
string mcrypt_encrypt ( string $cipher , string $key , string $data , string $mode [, string $iv ] )
what? php7.1已经不再支持了。官方来的太突然,我觉得在PHP7.0这个大版本就应该直接淘汰了,但是在小版本淘汰,有点操蛋。刚好我们项目就是使用是已经在7.1版本了,没办法只能寻找替代方案。
官方貌似是没有给到替代方案,其实我们其实在很多场景下都在使用一种加密方式。那就是openssl,
我们使用的是openssl_encrypt。我们看一下官方。
openssl_encrypt
(PHP 5 >= 5.3.0, PHP 7)
openssl_encrypt — 加密数据
说明:以指定的方式和 key 加密数据,返回原始或 base64 编码后的字符串。
string openssl_encrypt ( string $data , string $method , string $key [, int $options = 0 [, string $iv = “” [, string &$tag = NULL [, string $aad = “” [, int $tag_length = 16 ]]]]] )
针对上面的那段代码,
$data = openssl_encrypt($input,’des-ede3′,$key,0);
what?一行代码搞定了? Yes,对的就是一行代码搞定了。但是,openssl_encrypt加密会按照加密模式进行加密,之后还会进行base64加密一下,哈哈哈,所以需要进行解密
base64_decode($data);
此刻已经加密完成,可以进行京东支付了。
解密
同样,加密解密肯定是同步的,既然官方已经不支持这种方式加密,当然解密方式在7.1也是被抛弃了。mdecrypt_generic
mdecrypt_generic
(PHP 4 >= 4.0.2, PHP 5, PHP 7)
mdecrypt_generic — 解密数据
string mdecrypt_generic ( resource $td , string $data )
解密数据。 请注意,由于存在数据补齐的情况, 返回字符串的长度可能和明文的长度不相等。
Warning
This function has been DEPRECATED as of PHP 7.1.0. Relying on this function is highly discouraged.
openssl_decrypt
openssl_decrypt
(PHP 5 >= 5.3.0, PHP 7)
openssl_decrypt — Decrypts data
说明
string openssl_decrypt ( string $data , string $method , string $key [, int $options = 0 [, string $iv = “” [, string $tag = “” [, string $aad = “” ]]]] )
Takes a raw or base64 encoded string and decrypts it using a given method and key.
解密替代方案:
$decrypted = openssl_decrypt($encrypted,’des-ede3′,$key,OPENSSL_RAW_DATA | OPENSSL_ZERO_PADDING); // 解密
同样是一行代码,同样这个也是会多加操作的,同样也是base64。
后记(骚话)
其实,对于openssl_encrypt和mcrypt_encrypt,openssl_encrypt支持的加密方式更加多,就如同我在开篇所说的,我更希望是在大版本更替的时候淘汰掉这些,因为这样引起的关注度会比较高,在小版本迭代中不会引起那么多关注度。所以即使你没因为版本遇到这个问题,我也希望你用到了就替换掉,openssl支持的比较全面,版本目前也比较多。