C/C++ VS PHP AES128_ECB_PKCS5Padding
C/C++ VS PHP AES128_ECB_PKCS5Padding
資料來源: https://github.com/HUTOYP/AES128_ECB_PKCS5Padding
https://blog.51cto.com/laok8/1909479
https://github.com/yekq/Android_JNI_AES_128_ECB_PKCS5Padding
https://github.com/shoneworn/JNI_AES-ECB-PKCS5Padding
GITHUB: https://github.com/jash-git/Jash-good-idea-20220101-001/tree/main/C%20VS%20PHP%20AES128_ECB_PKCS5Padding
實測可以正確結果:
Security::encrypt:IDcqXMG9R6tp5Vqi1RO92A== Security::decrypt:example ------ Hello world! IDcqXMG9R6tp5Vqi1RO92A==,24 7,example Process returned 0 (0x0) execution time : 0.014 s Press any key to continue.
PHP
<?php class Security { public static function encrypt($input, $key) { $size = mcrypt_get_block_size(MCRYPT_RIJNDAEL_128, MCRYPT_MODE_ECB); $input = Security::pkcs5_pad($input, $size); $td = mcrypt_module_open(MCRYPT_RIJNDAEL_128, '', MCRYPT_MODE_ECB, ''); $iv = mcrypt_create_iv (mcrypt_enc_get_iv_size($td), MCRYPT_RAND); mcrypt_generic_init($td, $key, $iv); $data = mcrypt_generic($td, $input); mcrypt_generic_deinit($td); mcrypt_module_close($td); $data = base64_encode($data); return $data; } private static function pkcs5_pad ($text, $blocksize) { $pad = $blocksize - (strlen($text) % $blocksize); return $text . str_repeat(chr($pad), $pad); } public static function decrypt($sStr, $sKey) { $decrypted= mcrypt_decrypt( MCRYPT_RIJNDAEL_128, $sKey, base64_decode($sStr), MCRYPT_MODE_ECB ); $dec_s = strlen($decrypted); $padding = ord($decrypted[$dec_s-1]); $decrypted = substr($decrypted, 0, -$padding); return $decrypted; } } $key = "1234567891234567"; $data = "example"; $value = Security::encrypt($data , $key ); echo "Security::encrypt:".$value.'<br/>'; echo "Security::decrypt:".Security::decrypt($value, $key ); ?>
C – aes.c
/* This is an implementation of the AES128 algorithm, specifically ECB and CBC mode. The implementation is verified against the test vectors in: National Institute of Standards and Technology Special Publication 800-38A 2001 ED ECB-AES128 ---------- plain-text: 6bc1bee22e409f96e93d7e117393172a ae2d8a571e03ac9c9eb76fac45af8e51 30c81c46a35ce411e5fbc1191a0a52ef f69f2445df4f9b17ad2b417be66c3710 key: 2b7e151628aed2a6abf7158809cf4f3c resulting cipher 3ad77bb40d7a3660a89ecaf32466ef97 f5d3d58503b9699de785895a96fdbaaf 43b1cd7f598ece23881b00e3ed030688 7b0c785e27e8ad3f8223207104725dd4 NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) You should pad the end of the string with zeros if this is not the case. */ /*****************************************************************************/ /* Includes: */ /*****************************************************************************/ #include "aes.h" #define JNI_TRUE 1 #define JNI_FALSE 0 /*****************************************************************************/ /* Defines: */ /*****************************************************************************/ // The number of columns comprising a state in AES. This is a constant in AES. Value=4 #define Nb 4 // The number of 32 bit words in a key. #define Nk 4 // Key length in bytes [128 bit] #define KEYLEN 16 // The number of rounds in AES Cipher. #define Nr 10 // jcallan@github points out that declaring Multiply as a function // reduces code size considerably with the Keil ARM compiler. // See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3 #ifndef MULTIPLY_AS_A_FUNCTION #define MULTIPLY_AS_A_FUNCTION 0 #endif /*****************************************************************************/ /* Private variables: */ /*****************************************************************************/ // state - array holding the intermediate results during decryption. typedef uint8_t state_t[4][4]; static state_t* state; // The array that stores the round keys. static uint8_t RoundKey[176]; // The Key input to the AES Program static const uint8_t* Key; #if defined(CBC) && CBC // Initial Vector used only for CBC mode static uint8_t* Iv; #endif // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM // The numbers below can be computed dynamically trading ROM for RAM - // This can be useful in (embedded) bootloader applications, where ROM is often limited. static const uint8_t sbox[256] = { //0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; // The round constant word array, Rcon[i], contains the values given by // x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) // Note that i starts at 1, not 0). static const uint8_t Rcon[255] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb }; /*****************************************************************************/ /* Private functions: */ /*****************************************************************************/ static uint8_t getSBoxValue(uint8_t num) { return sbox[num]; } static uint8_t getSBoxInvert(uint8_t num) { return rsbox[num]; } // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. static void KeyExpansion(void) { uint32_t i, j, k; uint8_t tempa[4]; // Used for the column/row operations // The first round key is the key itself. for(i = 0; i < Nk; ++i) { RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; } // All other round keys are found from the previous round keys. for(; (i < (Nb * (Nr + 1))); ++i) { for(j = 0; j < 4; ++j) { tempa[j]=RoundKey[(i-1) * 4 + j]; } if (i % Nk == 0) { // This function rotates the 4 bytes in a word to the left once. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] // Function RotWord() { k = tempa[0]; tempa[0] = tempa[1]; tempa[1] = tempa[2]; tempa[2] = tempa[3]; tempa[3] = k; } // SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word. // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } tempa[0] = tempa[0] ^ Rcon[i/Nk]; } else if (Nk > 6 && i % Nk == 4) { // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } } RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0]; RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1]; RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2]; RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3]; } } // This function adds the round key to state. // The round key is added to the state by an XOR function. static void AddRoundKey(uint8_t round) { uint8_t i,j; for(i=0;i<4;++i) { for(j = 0; j < 4; ++j) { (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; } } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void SubBytes(void) { uint8_t i, j; for(i = 0; i < 4; ++i) { for(j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxValue((*state)[j][i]); } } } // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. static void ShiftRows(void) { uint8_t temp; // Rotate first row 1 columns to left temp = (*state)[0][1]; (*state)[0][1] = (*state)[1][1]; (*state)[1][1] = (*state)[2][1]; (*state)[2][1] = (*state)[3][1]; (*state)[3][1] = temp; // Rotate second row 2 columns to left temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; // Rotate third row 3 columns to left temp = (*state)[0][3]; (*state)[0][3] = (*state)[3][3]; (*state)[3][3] = (*state)[2][3]; (*state)[2][3] = (*state)[1][3]; (*state)[1][3] = temp; } static uint8_t xtime(uint8_t x) { return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); } // MixColumns function mixes the columns of the state matrix static void MixColumns(void) { uint8_t i; uint8_t Tmp,Tm,t; for(i = 0; i < 4; ++i) { t = (*state)[i][0]; Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; } } // Multiply is used to multiply numbers in the field GF(2^8) #if MULTIPLY_AS_A_FUNCTION static uint8_t Multiply(uint8_t x, uint8_t y) { return (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); } #else #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xtime(x)) ^ \ ((y>>2 & 1) * xtime(xtime(x))) ^ \ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ #endif // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. static void InvMixColumns(void) { int i; uint8_t a,b,c,d; for(i=0;i<4;++i) { a = (*state)[i][0]; b = (*state)[i][1]; c = (*state)[i][2]; d = (*state)[i][3]; (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void InvSubBytes(void) { uint8_t i,j; for(i=0;i<4;++i) { for(j=0;j<4;++j) { (*state)[j][i] = getSBoxInvert((*state)[j][i]); } } } static void InvShiftRows(void) { uint8_t temp; // Rotate first row 1 columns to right temp=(*state)[3][1]; (*state)[3][1]=(*state)[2][1]; (*state)[2][1]=(*state)[1][1]; (*state)[1][1]=(*state)[0][1]; (*state)[0][1]=temp; // Rotate second row 2 columns to right temp=(*state)[0][2]; (*state)[0][2]=(*state)[2][2]; (*state)[2][2]=temp; temp=(*state)[1][2]; (*state)[1][2]=(*state)[3][2]; (*state)[3][2]=temp; // Rotate third row 3 columns to right temp=(*state)[0][3]; (*state)[0][3]=(*state)[1][3]; (*state)[1][3]=(*state)[2][3]; (*state)[2][3]=(*state)[3][3]; (*state)[3][3]=temp; } // Cipher is the main function that encrypts the PlainText. static void Cipher(void) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(0); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for(round = 1; round < Nr; ++round) { SubBytes(); ShiftRows(); MixColumns(); AddRoundKey(round); } // The last round is given below. // The MixColumns function is not here in the last round. SubBytes(); ShiftRows(); AddRoundKey(Nr); } static void InvCipher(void) { uint8_t round=0; // Add the First round key to the state before starting the rounds. AddRoundKey(Nr); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for(round=Nr-1;round>0;round--) { InvShiftRows(); InvSubBytes(); AddRoundKey(round); InvMixColumns(); } // The last round is given below. // The MixColumns function is not here in the last round. InvShiftRows(); InvSubBytes(); AddRoundKey(0); } static void BlockCopy(uint8_t* output, uint8_t* input) { uint8_t i; for (i=0;i<KEYLEN;++i) { output[i] = input[i]; } } /*****************************************************************************/ /* Public functions: */ /*****************************************************************************/ #if defined(ECB) && ECB void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output) { // Copy input to output, and work in-memory on output BlockCopy(output, input); state = (state_t*)output; Key = key; KeyExpansion(); // The next function call encrypts the PlainText with the Key using AES algorithm. Cipher(); } void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output) { // Copy input to output, and work in-memory on output BlockCopy(output, input); state = (state_t*)output; // The KeyExpansion routine must be called before encryption. Key = key; KeyExpansion(); InvCipher(); } /** * 不定长加密,pkcs5padding */ char* AES_128_ECB_PKCS5Padding_Encrypt(const char *in, const uint8_t *key) { int inLength= (int) strlen(in);//输入的长度 int remainder = inLength % 16; uint8_t *paddingInput; int paddingInputLengt=0; int group = inLength / 16; int size = 16 * (group + 1); paddingInput=(uint8_t*)malloc(size); paddingInputLengt=size; int dif = size - inLength; int i; for (i = 0; i < size; i++) { if (i < inLength) { paddingInput[i] = in[i]; } else { if (remainder == 0) { //刚好是16倍数,就填充16个16 paddingInput[i] = HEX[0]; } else { //如果不足16位 少多少位就补几个几 如:少4为就补4个4 以此类推 paddingInput[i] = HEX[dif]; } } } int count=paddingInputLengt / 16; //开始分段加密 char * out=(char*)malloc(paddingInputLengt); for ( i = 0; i < count; ++i) { AES128_ECB_encrypt(paddingInput+i*16, key, out+i*16); } char * base64En=b64_encode(out,paddingInputLengt); //LOGE(base64En); free(paddingInput); free(out); return base64En; } /** * 不定长解密,pkcs5padding */ char * AES_128_ECB_PKCS5Padding_Decrypt(const char *in, const uint8_t* key) { //加密前:1 //key:1234567890abcdef //加密后:qkrxxA9fIF636aITDRJhcg== // in="m74nCuZkzK13anBQRDWeOw==";//123456 // in="qkrxxA9fIF636aITDRJhcg==";//1 // in="LuD5WoRRcHq1tuEWZQHLHwLexWUsAhX5OvafAJ8PbVg=";//abcdefghijklmnop // in="+R99oRBuckos5mdUqQHHeoja4/HYqWtqTM3cgl+E0a3p5i7DoLeBpq/mVUfuEh5D1VRn4Wt4TzHazvz931WfiA==";//57yW56CB5Y6f55CGOuWwhjPkuKrlrZfoioLovazmjaLmiJA05Liq5a2X6IqC // in="UUNc8Dh0OVZE9UyzJwWTSVkt3hgIxg0nfVHpSirRL3T1meUZDRUINWvoYfkcOEpL";//编码原理:将3个字节转换成4个字节 // in="Yrl8Sryq7Kpce4UWRfG3bBBYpzXv59Muj0wjkJYRHFb73CogeDRfQCXsjSfxTe0gibaf+f1FLekwow0f1W9stJy3q7CNOPzkSJVdCtyZvIxMxLwz9hyatUJnU4Nq6i2gkaiCZcwHuDtrAHpEoy1k0vudpWhGu2457iSc40Tqw4tQnxKX18DcKNG5/KPUM+A5Y9a3FxaAy84Turio78b+6A==";//{"Json解析":"支持格式化高亮折叠","支持XML转换":"支持XML转换Json,Json转XML","Json格式验证":"更详细准确的错误信息"} //LOGE("输入:"); //LOGE(in); uint8_t *inputDesBase64=b64_decode(in,strlen(in)); const size_t inputLength= (strlen(in) / 4) * 3; uint8_t *out=malloc(inputLength); memset(out,0,inputLength); size_t count=inputLength/16; if (count<=0) { count=1; } size_t i; for ( i = 0; i < count; ++i) { AES128_ECB_decrypt(inputDesBase64+i*16,key,out+i*16); } //去除结尾垃圾字符串 begin int index = findPaddingIndex(out); if(index==NULL) { return (char*)out; } if(index < strlen(out)){// if (index>strlen) will crash. memset(out+index, '\0', strlen(out)-index); } //去除结尾垃圾字符串 end //LOGE("解密结果:"); //LOGE(out); free(inputDesBase64); return (char *) out; } /** * 查找结果中的一些 多余字符串 * @param str : 加密结果原文 * @return int : 垃圾字符串的开始位置 */ int findPaddingIndex(uint8_t * str) { return (int)(strlen(str) - str[strlen(str) - 1]); } /** * * 这里干掉了CBC 相关代码 ,这块代码是一个AES的一个带有向量的算法 * 找寻这些代码 请移步 https://github.com/kokke/tiny-AES128-C #if defined(CBC) && CBC #endif // #if defined(CBC) && CBC */ #endif // #if defined(ECB) && ECB
C – aes.h
#ifndef AES_H_INCLUDED #define AES_H_INCLUDED //#include <android/log.h> //#include <jni.h> #include <stdlib.h> #include <stdint.h> #include "base64.h" // #define the macros below to 1/0 to enable/disable the mode of operation. // // CBC enables AES128 encryption in CBC-mode of operation and handles 0-padding. // ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously. // The #ifndef-guard allows it to be configured before #include'ing or at compile time. #ifndef CBC #define CBC 1 #endif #ifndef ECB #define ECB 1 #endif static const unsigned char HEX[16]={0x10,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f}; //__attribute__((section (".mytext"))) //static const uint8_t AES_KEY[]="1234567890abcdef"; #if defined(ECB) && ECB void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t *output); void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output); char* AES_128_ECB_PKCS5Padding_Encrypt(const char *in,const uint8_t *key); char* AES_128_ECB_PKCS5Padding_Decrypt(const char *in, const uint8_t* key); int findPaddingIndex(uint8_t * str); #endif // #if defined(ECB) && ECB /* * CBC是向量模式 暂不采用 如果需要使用 ,请移步 https://github.com/kokke/tiny-AES128-C #if defined(CBC) && CBC #endif // #if defined(CBC) && CBC */ #endif // AES_H_INCLUDED
C – base64.c
#include <stdio.h> #include <stdlib.h> #include <ctype.h> #include "base64.h" char * b64_encode (const unsigned char *src, size_t len) { int i = 0; int j = 0; char *enc = NULL; size_t size = 0; unsigned char buf[4]; unsigned char tmp[3]; // alloc enc = (char *) malloc(0); if (NULL == enc) { return NULL; } // parse until end of source while (len--) { // read up to 3 bytes at a time into `tmp' tmp[i++] = *(src++); // if 3 bytes read then encode into `buf' if (3 == i) { buf[0] = (tmp[0] & 0xfc) >> 2; buf[1] = ((tmp[0] & 0x03) << 4) + ((tmp[1] & 0xf0) >> 4); buf[2] = ((tmp[1] & 0x0f) << 2) + ((tmp[2] & 0xc0) >> 6); buf[3] = tmp[2] & 0x3f; // allocate 4 new byts for `enc` and // then translate each encoded buffer // part by index from the base 64 index table // into `enc' unsigned char array enc = (char *) realloc(enc, size + 4); for (i = 0; i < 4; ++i) { enc[size++] = b64_table[buf[i]]; } // reset index i = 0; } } // remainder if (i > 0) { // fill `tmp' with `\0' at most 3 times for (j = i; j < 3; ++j) { tmp[j] = '\0'; } // perform same codec as above buf[0] = (tmp[0] & 0xfc) >> 2; buf[1] = ((tmp[0] & 0x03) << 4) + ((tmp[1] & 0xf0) >> 4); buf[2] = ((tmp[1] & 0x0f) << 2) + ((tmp[2] & 0xc0) >> 6); buf[3] = tmp[2] & 0x3f; // perform same write to `enc` with new allocation for (j = 0; (j < i + 1); ++j) { enc = (char *) realloc(enc, size + 1); enc[size++] = b64_table[buf[j]]; } // while there is still a remainder // append `=' to `enc' while ((i++ < 3)) { enc = (char *) realloc(enc, size + 1); enc[size++] = '='; } } // Make sure we have enough space to add '\0' character at end. enc = (char *) realloc(enc, size + 1); enc[size] = '\0'; return enc; } unsigned char * b64_decode(const char *src, size_t len) { return b64_decode_ex(src, len, NULL); } unsigned char * b64_decode_ex(const char *src, size_t len, size_t *decsize) { int i = 0; int j = 0; int l = 0; size_t size = 0; unsigned char *dec = NULL; unsigned char buf[3]; unsigned char tmp[4]; // alloc dec = (unsigned char *) malloc(0); if (NULL == dec) { return NULL; } // parse until end of source while (len--) { // break if char is `=' or not base64 char if ('=' == src[j]) { break; } if (!(isalnum(src[j]) || '+' == src[j] || '/' == src[j])) { break; } // read up to 4 bytes at a time into `tmp' tmp[i++] = src[j++]; // if 4 bytes read then decode into `buf' if (4 == i) { // translate values in `tmp' from table for (i = 0; i < 4; ++i) { // find translation char in `b64_table' for (l = 0; l < 64; ++l) { if (tmp[i] == b64_table[l]) { tmp[i] = l; break; } } } // decode buf[0] = (tmp[0] << 2) + ((tmp[1] & 0x30) >> 4); buf[1] = ((tmp[1] & 0xf) << 4) + ((tmp[2] & 0x3c) >> 2); buf[2] = ((tmp[2] & 0x3) << 6) + tmp[3]; // write decoded buffer to `dec' dec = (unsigned char *) realloc(dec, size + 3); for (i = 0; i < 3; ++i) { dec[size++] = buf[i]; } // reset i = 0; } } // remainder if (i > 0) { // fill `tmp' with `\0' at most 4 times for (j = i; j < 4; ++j) { tmp[j] = '\0'; } // translate remainder for (j = 0; j < 4; ++j) { // find translation char in `b64_table' for (l = 0; l < 64; ++l) { if (tmp[j] == b64_table[l]) { tmp[j] = l; break; } } } // decode remainder buf[0] = (tmp[0] << 2) + ((tmp[1] & 0x30) >> 4); buf[1] = ((tmp[1] & 0xf) << 4) + ((tmp[2] & 0x3c) >> 2); buf[2] = ((tmp[2] & 0x3) << 6) + tmp[3]; // write remainer decoded buffer to `dec' dec = (unsigned char *) realloc(dec, size + (i - 1)); for (j = 0; (j < i - 1); ++j) { dec[size++] = buf[j]; } } // Make sure we have enough space to add '\0' character at end. dec = (unsigned char *) realloc(dec, size + 1); dec[size] = '\0'; // Return back the size of decoded string if demanded. if (decsize != NULL) *decsize = size; return dec; }
C – base64.h
#ifndef BASE64_H_INCLUDED #define BASE64_H_INCLUDED /** * Base64 index table. */ static const char b64_table[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/' }; /** * Encode `unsigned char *' source with `size_t' size. * Returns a `char *' base64 encoded string. */ char * b64_encode (const unsigned char *, size_t); /** * Dencode `char *' source with `size_t' size. * Returns a `unsigned char *' base64 decoded string. */ unsigned char * b64_decode (const char *, size_t); /** * Dencode `char *' source with `size_t' size. * Returns a `unsigned char *' base64 decoded string + size of decoded string. */ unsigned char * b64_decode_ex (const char *, size_t, size_t *); #endif // BASE64_H_INCLUDED
C – main.c
#include <stdio.h> #include <stdlib.h> #include "base64.h" #include "aes.h" int main() { printf("Hello world!\n"); uint8_t AES_KEY[]="1234567891234567"; char *data = "example"; char *OutPut01 = AES_128_ECB_PKCS5Padding_Encrypt(data, AES_KEY); printf("%s,%d\n",OutPut01,strlen(OutPut01)); char *data01 = "IDcqXMG9R6tp5Vqi1RO92A=="; char *OutPut02 = AES_128_ECB_PKCS5Padding_Decrypt(data01,AES_KEY); printf("%d,%s\n",strlen(OutPut02),OutPut02); return 0; }
3 thoughts on “C/C++ VS PHP AES128_ECB_PKCS5Padding”
PHP 的程式有使用 USBWebserver_V86 測試確定會動
C/C++的程式有使用 Code::Blocks 測試確定會動
PHP7.1废弃加密方法替换方案
https://segmentfault.com/a/1190000010816852
首先,我们来看一下PHP官方网站的备注。
mcrypt_encrypt
(PHP 4 >= 4.0.2, PHP 5, PHP 7)
mcrypt_encrypt — 使用给定参数加密明文
注意,下面还有一个爆炸点:
Warning
This function has been DEPRECATED as of PHP 7.1.0. Relying on this function is highly discouraged.
string mcrypt_encrypt ( string $cipher , string $key , string $data , string $mode [, string $iv ] )
what? php7.1已经不再支持了。官方来的太突然,我觉得在PHP7.0这个大版本就应该直接淘汰了,但是在小版本淘汰,有点操蛋。刚好我们项目就是使用是已经在7.1版本了,没办法只能寻找替代方案。
官方貌似是没有给到替代方案,其实我们其实在很多场景下都在使用一种加密方式。那就是openssl,
我们使用的是openssl_encrypt。我们看一下官方。
openssl_encrypt
(PHP 5 >= 5.3.0, PHP 7)
openssl_encrypt — 加密数据
说明:以指定的方式和 key 加密数据,返回原始或 base64 编码后的字符串。
string openssl_encrypt ( string $data , string $method , string $key [, int $options = 0 [, string $iv = “” [, string &$tag = NULL [, string $aad = “” [, int $tag_length = 16 ]]]]] )
针对上面的那段代码,
$data = openssl_encrypt($input,’des-ede3′,$key,0);
what?一行代码搞定了? Yes,对的就是一行代码搞定了。但是,openssl_encrypt加密会按照加密模式进行加密,之后还会进行base64加密一下,哈哈哈,所以需要进行解密
base64_decode($data);
此刻已经加密完成,可以进行京东支付了。
解密
同样,加密解密肯定是同步的,既然官方已经不支持这种方式加密,当然解密方式在7.1也是被抛弃了。mdecrypt_generic
mdecrypt_generic
(PHP 4 >= 4.0.2, PHP 5, PHP 7)
mdecrypt_generic — 解密数据
string mdecrypt_generic ( resource $td , string $data )
解密数据。 请注意,由于存在数据补齐的情况, 返回字符串的长度可能和明文的长度不相等。
Warning
This function has been DEPRECATED as of PHP 7.1.0. Relying on this function is highly discouraged.
openssl_decrypt
openssl_decrypt
(PHP 5 >= 5.3.0, PHP 7)
openssl_decrypt — Decrypts data
说明
string openssl_decrypt ( string $data , string $method , string $key [, int $options = 0 [, string $iv = “” [, string $tag = “” [, string $aad = “” ]]]] )
Takes a raw or base64 encoded string and decrypts it using a given method and key.
解密替代方案:
$decrypted = openssl_decrypt($encrypted,’des-ede3′,$key,OPENSSL_RAW_DATA | OPENSSL_ZERO_PADDING); // 解密
同样是一行代码,同样这个也是会多加操作的,同样也是base64。
后记(骚话)
其实,对于openssl_encrypt和mcrypt_encrypt,openssl_encrypt支持的加密方式更加多,就如同我在开篇所说的,我更希望是在大版本更替的时候淘汰掉这些,因为这样引起的关注度会比较高,在小版本迭代中不会引起那么多关注度。所以即使你没因为版本遇到这个问题,我也希望你用到了就替换掉,openssl支持的比较全面,版本目前也比较多。