fanfuhan OpenCV 教學112 ~ opencv-112-利用KMeans圖像分割進行背景替換 [去背/分割 前景/背景]
fanfuhan OpenCV 教學112 ~ opencv-112-利用KMeans圖像分割進行背景替換 [去背/分割 前景/背景]
資料來源: https://fanfuhan.github.io/
https://fanfuhan.github.io/2019/05/24/opencv-112/
GITHUB:https://github.com/jash-git/fanfuhan_ML_OpenCV
KMeans可以實現簡單的證件照片的背景分割提取與替換,大致可以分為如下幾步實現
01.讀入圖像建立KMenas樣本
02.使用KMeans圖像分割,指定指定分類數目
03.取左上角的label得到背景cluster index
04.生成mask區域,然後高斯模糊進行背景替換
C++
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
Mat src = imread("D:/projects/opencv_tutorial/data/images/toux.jpg");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", WINDOW_AUTOSIZE);
imshow("input image", src);
int width = src.cols;
int height = src.rows;
int dims = src.channels();
// 初始化定义
int sampleCount = width*height;
int clusterCount = 3;
Mat labels;
Mat centers;
// RGB 数据转换到样本数据
Mat sample_data = src.reshape(3, sampleCount);
Mat data;
sample_data.convertTo(data, CV_32F);
// 运行K-Means
TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
kmeans(data, clusterCount, labels, criteria, clusterCount, KMEANS_PP_CENTERS, centers);
Mat mask = Mat::zeros(src.size(), CV_8UC1);
int index = labels.at<int>(0, 0);
labels = labels.reshape(1, height);
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
int c = labels.at<int>(row, col);
if (c == index) {
mask.at<uchar>(row, col) = 255;
}
}
}
Mat se = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
dilate(mask, mask, se);
GaussianBlur(mask, mask, Size(5, 5), 0);
Mat result = Mat::zeros(src.size(), CV_8UC3);
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
float w1 = mask.at<uchar>(row, col) / 255.0;
Vec3b bgr = src.at<Vec3b>(row, col);
bgr[0] = w1 * 255.0 + bgr[0] * (1.0 - w1);
bgr[1] = w1 * 0 + bgr[1] * (1.0 - w1);
bgr[2] = w1 * 255.0 + bgr[2] * (1.0 - w1);
result.at<Vec3b>(row, col) = bgr;
}
}
imshow("KMeans-image-Demo", result);
waitKey(0);
return 0;
}
Python
"""
利用KMeans图像分割进行背景替换
"""
import cv2 as cv
import numpy as np
image = cv.imread('images/toux.jpg')
cv.imshow("input", image)
h, w, ch = image.shape
# 构建图像数据
data = image.reshape((-1, 3))
data = np.float32(data)
# 图像分割
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
num_clusters = 4
ret, label, center = cv.kmeans(data, num_clusters, None, criteria, num_clusters, cv.KMEANS_RANDOM_CENTERS)
# 生成mask区域
index = label[0][0]
center = np.uint8(center)
color = center[0]
mask = np.zeros((h, w), dtype=np.uint8)
label = np.reshape(label, (h, w))
mask[label == index] = 255
# 高斯模糊
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
cv.dilate(mask, se, mask)
mask = cv.GaussianBlur(mask, (5, 5), 0)
cv.imshow("background-mask", mask)
# 背景替换
result = np.zeros((h, w, ch), dtype=np.uint8)
for row in range(h):
for col in range(w):
w1 = mask[row, col] / 255.0
b, g, r = image[row, col]
b = w1 * 255 + b * (1.0 - w1)
g = w1 * 0 + g * (1.0 - w1)
r = w1 * 255 + r * (1.0 - w1)
result[row, col] = (b, g, r)
cv.imshow("background-substitution", result)
cv.waitKey(0)
cv.destroyAllWindows()