jashliao 用 VC++ 實現 fanfuhan OpenCV 教學029 ~ opencv-029-快速的圖像邊緣保護濾波算法(edgePreservingFilter)[彩色圖像]

jashliao 用 VC++ 實現 fanfuhan OpenCV 教學029 ~ opencv-029-快速的圖像邊緣保護濾波算法(edgePreservingFilter)[彩色圖像]

jashliao 用 VC++ 實現 fanfuhan OpenCV 教學029 ~ opencv-029-快速的圖像邊緣保護濾波算法(edgePreservingFilter)[彩色圖像]


資料來源: https://fanfuhan.github.io/

https://fanfuhan.github.io/2019/04/08/opencv-029/


GITHUB:https://github.com/jash-git/fanfuhan_ML_OpenCV

https://github.com/jash-git/jashliao-implements-FANFUHAN-OPENCV-with-VC

★前言:

★主題:


    保邊濾波器(Edge Preserving Filter)是指在濾波過程中能夠有效的保留圖像中的邊緣信息的一類特殊濾波器。其中雙邊濾波器(Bilateral filter)、引導濾波器(Guided image filter)、加權最小二乘法濾波器(Weighted least square filter)為幾種比較廣為人知的保邊濾波器。


    高斯雙邊模糊與mean shift均值模糊兩種邊緣保留濾波算法,都因為計算量比較大,無法實時實現圖像邊緣保留濾波,限制了它們的使用場景,OpenCV中還實現了一種快速的邊緣保留濾波算法。


    高斯雙邊與mean shift均值在計算時候使用五維向量是其計算量大速度慢的根本原因,該算法通過等價變換到低緯維度空間,實現了數據降維與快速計算。


OPENCV提供的保邊濾波器(edgepreservingFilter)函數定義如下所列:

        void edgepreservingFilter( InputArray src, OutputArray dst, int flags = 1,float sigma s = 60, float sigma r = 8.4f);

        參數說明:
        src: 輸入8 位3 通道圖像。
        dst: 輸出8 位3 通道圖像。
        flags: 邊緣保護濾波 cv::RECURS_FILTER 或 cv::NORMCONV_FILTER。


C++

// VC_FANFUHAN_OPENCV029.cpp : 定義主控台應用程式的進入點。
//
/*
// Debug | x32
通用屬性
| C/C++
|	| 一般
|		| 其他 Include 目錄 -> C:\opencv\build\include
|
| 連結器
| 	|一一般
|		|  其他程式庫目錄 -> C:\opencv\build\x64\vc15\lib
|
| 	|一輸入
|		| 其他相依性 -> opencv_world411d.lib;%(AdditionalDependencies)
// Releas | x64
組態屬性
| C/C++
|	| 一般
|		| 其他 Include 目錄 -> C:\opencv\build\include
|
| 連結器
| 	|一般
|		| 其他程式庫目錄 -> C:\opencv\build\x64\vc15\lib
|
| 	|一輸入
|		| 其他相依性 -> opencv_world411.lib;%(AdditionalDependencies)
*/

#include "stdafx.h"
#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;
using namespace cv;

void blur_demo(Mat &image, Mat &sum);
void edge_demo(Mat &image, Mat &sum);
int getblockSum(Mat &sum, int x1, int y1, int x2, int y2, int i);

void showHistogram(InputArray src, cv::String StrTitle);
void backProjection_demo(Mat &mat, Mat &model);
void blur3x3(Mat &src, Mat *det);

void add_salt_pepper_noise(Mat &image);
void add_gaussian_noise(Mat &image);

void pause()
{
	printf("Press Enter key to continue...");
	fgetc(stdin);
}
int main()
{
	Mat src = imread("../../images/test.png");

	if (src.empty())
	{
		cout << "could not load image.." << endl;
		pause();
		return -1;
	}
	else
	{
		imshow("input_src", src);
		showHistogram(src, "Histogram_input_src");

		Mat dst;
		/*
		保邊濾波器(Edge Preserving Filter)是指在濾波過程中能夠有效的保留圖像中的邊緣信息的一類特殊濾波器。其中雙邊濾波器(Bilateral filter)、引導濾波器(Guided image filter)、加權最小二乘法濾波器(Weighted least square filter)為幾種比較廣為人知的保邊濾波器。
		高斯雙邊模糊與mean shift均值模糊兩種邊緣保留濾波算法,都因為計算量比較大,無法實時實現圖像邊緣保留濾波,限制了它們的使用場景,OpenCV中還實現了一種快速的邊緣保留濾波算法。
		高斯雙邊與mean shift均值在計算時候使用五維向量是其計算量大速度慢的根本原因,該算法通過等價變換到低緯維度空間,實現了數據降維與快速計算。
		void edgepreservingFilter( InputArray src, OutputArray dst, int flags = 1,float sigma s = 60, float sigma r = 8.4f);
		參數說明:
		src: 輸入8 位3 通道圖像。
		dst: 輸出8 位3 通道圖像。
		flags: 邊緣保護濾波 cv::RECURS_FILTER 或 cv::NORMCONV_FILTER。
		*/
		edgePreservingFilter(src, dst, 1, 60, 0.44);
		imshow("result", dst);
		showHistogram(dst, "Histogram_input_result");

		waitKey(0);
		return 0;

	}

	return 0;
}

void blur_demo(Mat &image, Mat &sum) {
	int w = image.cols;
	int h = image.rows;
	Mat result = Mat::zeros(image.size(), image.type());
	int x2 = 0, y2 = 0;
	int x1 = 0, y1 = 0;
	int ksize = 5;
	int radius = ksize / 2;
	int ch = image.channels();
	int cx = 0, cy = 0;
	for (int row = 0; row < h + radius; row++) {
		y2 = (row + 1)>h ? h : (row + 1);
		y1 = (row - ksize) < 0 ? 0 : (row - ksize);
		for (int col = 0; col < w + radius; col++) {
			x2 = (col + 1)>w ? w : (col + 1);
			x1 = (col - ksize) < 0 ? 0 : (col - ksize);
			cx = (col - radius) < 0 ? 0 : col - radius;
			cy = (row - radius) < 0 ? 0 : row - radius;
			int num = (x2 - x1)*(y2 - y1);
			for (int i = 0; i < ch; i++) {
				// 积分图查找和表,计算卷积
				int s = getblockSum(sum, x1, y1, x2, y2, i);
				result.at<Vec3b>(cy, cx)[i] = saturate_cast<uchar>(s / num);
			}
		}
	}
	imshow("blur_demo", result);
}

/**
* 3x3 sobel 垂直边缘检测演示
*/
void edge_demo(Mat &image, Mat &sum) {
	int w = image.cols;
	int h = image.rows;
	Mat result = Mat::zeros(image.size(), CV_32SC3);
	int x2 = 0, y2 = 0;
	int x1 = 0, y1 = 0;
	int ksize = 3; // 算子大小,可以修改,越大边缘效应越明显
	int radius = ksize / 2;
	int ch = image.channels();
	int cx = 0, cy = 0;
	for (int row = 0; row < h + radius; row++) {
		y2 = (row + 1)>h ? h : (row + 1);
		y1 = (row - ksize) < 0 ? 0 : (row - ksize);
		for (int col = 0; col < w + radius; col++) {
			x2 = (col + 1)>w ? w : (col + 1);
			x1 = (col - ksize) < 0 ? 0 : (col - ksize);
			cx = (col - radius) < 0 ? 0 : col - radius;
			cy = (row - radius) < 0 ? 0 : row - radius;
			int num = (x2 - x1)*(y2 - y1);
			for (int i = 0; i < ch; i++) {
				// 积分图查找和表,计算卷积
				int s1 = getblockSum(sum, x1, y1, cx, y2, i);
				int s2 = getblockSum(sum, cx, y1, x2, y2, i);
				result.at<Vec3i>(cy, cx)[i] = saturate_cast<int>(s2 - s1);
			}
		}
	}
	Mat dst, gray;
	convertScaleAbs(result, dst);
	normalize(dst, dst, 0, 255, NORM_MINMAX);
	cvtColor(dst, gray, COLOR_BGR2GRAY);
	imshow("edge_demo", gray);
}

int getblockSum(Mat &sum, int x1, int y1, int x2, int y2, int i) {
	int tl = sum.at<Vec3i>(y1, x1)[i];
	int tr = sum.at<Vec3i>(y2, x1)[i];
	int bl = sum.at<Vec3i>(y1, x2)[i];
	int br = sum.at<Vec3i>(y2, x2)[i];
	int s = (br - bl - tr + tl);
	return s;
}
void add_gaussian_noise(Mat &image) {
	Mat noise = Mat::zeros(image.size(), image.type());
	// 产生高斯噪声
	randn(noise, (15, 15, 15), (30, 30, 30));
	Mat dst;
	add(image, noise, dst);
	image = dst.clone();//dst.copyTo(image);//圖像複製
						//imshow("gaussian_noise", dst);
}

void add_salt_pepper_noise(Mat &image) {
	// 随机数产生器
	RNG rng(12345);
	for (int i = 0; i < 1000; ++i) {
		int x = rng.uniform(0, image.rows);
		int y = rng.uniform(0, image.cols);
		if (i % 2 == 1) {
			image.at<Vec3b>(y, x) = Vec3b(255, 255, 255);
		}
		else {
			image.at<Vec3b>(y, x) = Vec3b(0, 0, 0);
		}
	}
	//imshow("saltp_epper", image);
}

void blur3x3(Mat &src, Mat *det)
{
	// 3x3 均值模糊,自定义版本实现
	for (int row = 1; row < src.rows - 1; row++) {
		for (int col = 1; col < src.cols - 1; col++) {
			Vec3b p1 = src.at<Vec3b>(row - 1, col - 1);
			Vec3b p2 = src.at<Vec3b>(row - 1, col);
			Vec3b p3 = src.at<Vec3b>(row - 1, col + 1);
			Vec3b p4 = src.at<Vec3b>(row, col - 1);
			Vec3b p5 = src.at<Vec3b>(row, col);
			Vec3b p6 = src.at<Vec3b>(row, col + 1);
			Vec3b p7 = src.at<Vec3b>(row + 1, col - 1);
			Vec3b p8 = src.at<Vec3b>(row + 1, col);
			Vec3b p9 = src.at<Vec3b>(row + 1, col + 1);

			int b = p1[0] + p2[0] + p3[0] + p4[0] + p5[0] + p6[0] + p7[0] + p8[0] + p9[0];
			int g = p1[1] + p2[1] + p3[1] + p4[1] + p5[1] + p6[1] + p7[1] + p8[1] + p9[1];
			int r = p1[2] + p2[2] + p3[2] + p4[2] + p5[2] + p6[2] + p7[2] + p8[2] + p9[2];

			det->at<Vec3b>(row, col)[0] = saturate_cast<uchar>(b / 9);
			det->at<Vec3b>(row, col)[1] = saturate_cast<uchar>(g / 9);
			det->at<Vec3b>(row, col)[2] = saturate_cast<uchar>(r / 9);
		}
	}
}

void backProjection_demo(Mat &image, Mat &model)
{
	Mat image_hsv, model_hsv;
	cvtColor(image, image_hsv, COLOR_BGR2HSV);//彩色轉HSV
	cvtColor(model, model_hsv, COLOR_BGR2HSV);

	// 定义直方图参数与属性
	int h_bins = 32, s_bins = 32;
	int histSize[] = { h_bins, s_bins };//要切分的像素強度值範圍,預設為256。每個channel皆可指定一個範圍。例如,[32,32,32] 表示RGB三個channels皆切分為32區段
	float h_ranges[] = { 0, 180 }, s_ranges[] = { 0, 256 };
	const float* ranges[] = { h_ranges, s_ranges };
	int channels[] = { 0, 1 };

	Mat roiHist;//計算ROI的直方圖
	calcHist(&model_hsv, 1, channels, Mat(), roiHist, 2, histSize, ranges);
	normalize(roiHist, roiHist, 0, 255, NORM_MINMAX, -1, Mat());

	Mat roiproj, backproj;
	calcBackProject(&image_hsv, 1, channels, roiHist, roiproj, ranges);//使用反向投影 產生ROI(前景)的mask
	bitwise_not(roiproj, backproj);//產生背景的mask
	imshow("ROIProj", roiproj);
	imshow("BackProj", backproj);
}

void showHistogram(InputArray src, cv::String StrTitle)
{
	bool blnGray = false;
	if (src.channels() == 1)
	{
		blnGray = true;
	}

	// 三通道/單通道 直方圖 紀錄陣列
	vector<Mat> bgr_plane;
	vector<Mat> gray_plane;

	// 定义参数变量
	const int channels[1] = { 0 };
	const int bins[1] = { 256 };
	float hranges[2] = { 0, 255 };
	const float *ranges[1] = { hranges };
	Mat b_hist, g_hist, r_hist, hist;
	// 计算三通道直方图
	/*
	void calcHist( const Mat* images, int nimages,const int* channels, InputArray mask,OutputArray hist, int dims, const int* histSize,const float** ranges, bool uniform=true, bool accumulate=false );
	1.輸入的圖像數組
	2.輸入數組的個數
	3.通道數
	4.掩碼
	5.直方圖
	6.直方圖維度
	7.直方圖每個維度的尺寸數組
	8.每一維數組的範圍
	9.直方圖是否是均勻
	10.配置階段不清零
	*/
	if (blnGray)
	{
		split(src, gray_plane);
		calcHist(&gray_plane[0], 1, 0, Mat(), hist, 1, bins, ranges);
	}
	else
	{
		split(src, bgr_plane);
		calcHist(&bgr_plane[0], 1, 0, Mat(), b_hist, 1, bins, ranges);
		calcHist(&bgr_plane[1], 1, 0, Mat(), g_hist, 1, bins, ranges);
		calcHist(&bgr_plane[2], 1, 0, Mat(), r_hist, 1, bins, ranges);
	}

	/*
	* 显示直方图
	*/
	int hist_w = 512;
	int hist_h = 400;
	int bin_w = cvRound((double)hist_w / bins[0]);
	Mat histImage = Mat::zeros(hist_h, hist_w, CV_8UC3);
	// 归一化直方图数据
	if (blnGray)
	{
		normalize(hist, hist, 0, histImage.rows, NORM_MINMAX, -1);
	}
	else
	{
		normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1);
		normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1);
		normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1);
	}

	// 绘制直方图曲线
	for (int i = 1; i < bins[0]; ++i)
	{
		if (blnGray)
		{
			line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(hist.at<float>(i - 1))),
				Point(bin_w * (i), hist_h - cvRound(hist.at<float>(i))), Scalar(255, 255, 255),
				2, 8, 0);
		}
		else
		{
			line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
				Point(bin_w * (i), hist_h - cvRound(b_hist.at<float>(i))), Scalar(255, 0, 0),
				2, 8, 0);
			line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
				Point(bin_w * (i), hist_h - cvRound(g_hist.at<float>(i))), Scalar(0, 255, 0),
				2, 8, 0);
			line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
				Point(bin_w * (i), hist_h - cvRound(r_hist.at<float>(i))), Scalar(0, 0, 255),
				2, 8, 0);
		}


	}
	imshow(StrTitle, histImage);
}


Python

import cv2 as cv
import numpy as np

src = cv.imread("D:/images/example.png")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)

h, w = src.shape[:2]
dst = cv.edgePreservingFilter(src, sigma_s=100, sigma_r=0.4, flags=cv.RECURS_FILTER)
result = np.zeros([h, w*2, 3], dtype=src.dtype)
result[0:h,0:w,:] = src
result[0:h,w:2*w,:] = dst
cv.imshow("result", result)
cv.imwrite("D:/result.png", result)


cv.waitKey(0)
cv.destroyAllWindows()


★結果圖:


★延伸說明/重點回顧:


發表迴響

你的電子郵件位址並不會被公開。 必要欄位標記為 *