C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法
C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法
因為單晶片有用AES128資料加密,所以要找尋可以在PC端解密的程式
//--------------------------------------------------------------------------- #define BPOLY 0x1b // Lower 8 bits of (x^8+x^4+x^3+x+1), ie. (x^4+x^3+x+1). #define BLOCKSIZE 16 // Block size in number of bytes. // Nb #define KEYBITS 128 // Use AES128. // Nk #define ROUNDS 10 // Number of rounds. // Nr #define KEYLENGTH 16 // Key length in number of bytes. #define EXPANDED_KEY_SIZE (BLOCKSIZE * (ROUNDS+1)) // 176, 208 or 240 bytes. unsigned char AES_Expand_Key[EXPANDED_KEY_SIZE]; // 176 bytes , expand key table unsigned char AES_Key[KEYLENGTH] = {0x25, 0x48, 0x36, 0x38, 0x6A, 0x88, 0x59, 0x4A, 0x63, 0x87, 0x5A, 0x6F, 0x9E, 0xCD, 0xAC, 0x01}; // 16 bytes //--------------------------------------------------------------------------- // Precomputed lookup table for the SBox const unsigned char sBox[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 // }; //--------------------------------------------------------------------------- // Precomputed lookup table for the inverse SBox const unsigned char sBoxInv[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d // }; // Prepare first row of matrix twice, to eliminate need for cycling. const unsigned char MixRow[8] = { 0x02, 0x03, 0x01, 0x01, 0x02, 0x03, 0x01, 0x01 }; // The round constants used in subkey expansion . static unsigned char Rcon[4]; static unsigned char Ktemp[4]; //--------------------------------------------------------------------------- // copy count bytes //--------------------------------------------------------------------------- void CopyBytes(unsigned char *to, unsigned char *from, unsigned char count) { do { *to = *from; to++; from++; } while (--count); } //--------------------------------------------------------------------------- unsigned char Multiply(unsigned char num, unsigned char factor) { unsigned char mask = 1; unsigned char result = 0; while (mask != 0) { // Check bit of factor given by mask. if (mask &factor) { // Add current multiple of num in GF(2). result ^= num; } // Shift mask to indicate next bit. mask <<= 1; // Double num. num = (num << 1) ^ (num &0x80 ? BPOLY : 0); } return result; } //--------------------------------------------------------------------------- unsigned char DotProduct(unsigned char *vector1, unsigned char *vector2) { unsigned char result = 0; result ^= Multiply(*vector1++, *vector2++); result ^= Multiply(*vector1++, *vector2++); result ^= Multiply(*vector1++, *vector2++); result ^= Multiply(*vector1, *vector2); return result; } //--------------------------------------------------------------------------- void MixColumn(unsigned char *column) { // Take dot products of each matrix row and the column vector. Ktemp[0] = DotProduct((unsigned char *)(MixRow + 0), column); Ktemp[1] = DotProduct((unsigned char *)(MixRow + 3), column); Ktemp[2] = DotProduct((unsigned char *)(MixRow + 2), column); Ktemp[3] = DotProduct((unsigned char *)(MixRow + 1), column); CopyBytes(column,Ktemp,4); } //--------------------------------------------------------------------------- // This routine applies the MixColumns diffusion operator to the whole // state matrix. The code is used for both encryption and decryption. //--------------------------------------------------------------------------- void MixColumns(unsigned char *state) { MixColumn(state + 0 * 4); MixColumn(state + 1 * 4); MixColumn(state + 2 * 4); MixColumn(state + 3 * 4); } //--------------------------------------------------------------------------- // shift the data left //--------------------------------------------------------------------------- void CycleLeft(unsigned char *row) { // Cycle 4 bytes in an array left once. unsigned char temp = row[0]; row[0] = row[1]; row[1] = row[2]; row[2] = row[3]; row[3] = temp; } //--------------------------------------------------------------------------- // shift the data left one bit according to MSB //--------------------------------------------------------------------------- unsigned char shift1bit(unsigned char input) { unsigned char b = 0; if (input &0x80) { b = BPOLY; } input = input << 1; b = input ^ b; return b; } //--------------------------------------------------------------------------- void InvMixColumn(unsigned char *column) { unsigned char r_mix0, r_mix1, r_mix2, r_mix3; r_mix0 = column[1] ^ column[2] ^ column[3]; r_mix1 = column[0] ^ column[2] ^ column[3]; r_mix2 = column[0] ^ column[1] ^ column[3]; r_mix3 = column[0] ^ column[1] ^ column[2]; column[0] = shift1bit(column[0]); column[1] = shift1bit(column[1]); column[2] = shift1bit(column[2]); column[3] = shift1bit(column[3]); r_mix0 ^= column[0] ^ column[1]; r_mix1 ^= column[1] ^ column[2]; r_mix2 ^= column[2] ^ column[3]; r_mix3 ^= column[0] ^ column[3]; column[0] = shift1bit(column[0]); column[1] = shift1bit(column[1]); column[2] = shift1bit(column[2]); column[3] = shift1bit(column[3]); r_mix0 ^= column[0] ^ column[2]; r_mix1 ^= column[1] ^ column[3]; r_mix2 ^= column[0] ^ column[2]; r_mix3 ^= column[1] ^ column[3]; column[0] = shift1bit(column[0]); column[1] = shift1bit(column[1]); column[2] = shift1bit(column[2]); column[3] = shift1bit(column[3]); column[0] ^= column[1] ^ column[2] ^ column[3]; r_mix0 ^= column[0]; r_mix1 ^= column[0]; r_mix2 ^= column[0]; r_mix3 ^= column[0]; column[0] = r_mix0; column[1] = r_mix1; column[2] = r_mix2; column[3] = r_mix3; } //--------------------------------------------------------------------------- void InvMixColumns(unsigned char *state) { InvMixColumn(state + 0 * 4); InvMixColumn(state + 1 * 4); InvMixColumn(state + 2 * 4); InvMixColumn(state + 3 * 4); } //--------------------------------------------------------------------------- // This routine is a substitution operation that takes each byte in the // State matrix and substitutes a new byte deternined by the Sbox table. //--------------------------------------------------------------------------- void SubBytes(unsigned char *bytes, unsigned char count) { do { *bytes = sBox[ *bytes]; // Substitute every byte in state. bytes++; } while (--count); } //--------------------------------------------------------------------------- void InvSubBytesAndXOR(unsigned char *bytes, unsigned char *key, unsigned char count) { do { *bytes = sBoxInv[ *bytes] ^ *key; // Inverse substitute every byte in state and add key. bytes++; key++; } while (--count); } //--------------------------------------------------------------------------- // This routine is a permutation operation that rotates bytes in the // State matrix to the left. //--------------------------------------------------------------------------- void ShiftRows(unsigned char *state) { unsigned char temp; // Note: State is arranged column by column. // Cycle second row left one time. temp = state[1+0 * 4]; state[1+0 * 4] = state[1+1 * 4]; state[1+1 * 4] = state[1+2 * 4]; state[1+2 * 4] = state[1+3 * 4]; state[1+3 * 4] = temp; // Cycle third row left two times. temp = state[2+0 * 4]; state[2+0 * 4] = state[2+2 * 4]; state[2+2 * 4] = temp; temp = state[2+1 * 4]; state[2+1 * 4] = state[2+3 * 4]; state[2+3 * 4] = temp; // Cycle fourth row left three times, ie. right once. temp = state[3+3 * 4]; state[3+3 * 4] = state[3+2 * 4]; state[3+2 * 4] = state[3+1 * 4]; state[3+1 * 4] = state[3+0 * 4]; state[3+0 * 4] = temp; } //--------------------------------------------------------------------------- // This routine is a permutation operation that rotates bytes in the // State matrix to the right. //--------------------------------------------------------------------------- void InvShiftRows(unsigned char *state) { unsigned char temp; // Note: State is arranged column by column. // Cycle second row right one time. temp = state[1+3 * 4]; state[1+3 * 4] = state[1+2 * 4]; state[1+2 * 4] = state[1+1 * 4]; state[1+1 * 4] = state[1+0 * 4]; state[1+0 * 4] = temp; // Cycle third row right two times. temp = state[2+0 * 4]; state[2+0 * 4] = state[2+2 * 4]; state[2+2 * 4] = temp; temp = state[2+1 * 4]; state[2+1 * 4] = state[2+3 * 4]; state[2+3 * 4] = temp; // Cycle fourth row right three times, ie. left once. temp = state[3+0 * 4]; state[3+0 * 4] = state[3+1 * 4]; state[3+1 * 4] = state[3+2 * 4]; state[3+2 * 4] = state[3+3 * 4]; state[3+3 * 4] = temp; } //--------------------------------------------------------------------------- // do count times XOR calculation //--------------------------------------------------------------------------- void XORBytes(unsigned char *bytes1, unsigned char *bytes2, unsigned char count) { do { *bytes1 ^= *bytes2; // Add in GF(2), ie. XOR. bytes1++; bytes2++; } while (--count); } //--------------------------------------------------------------------------- // The following routine implements the Rijndael key expansion algorithm. // Note: the key expansion is necessary for both encryption and decryption. //--------------------------------------------------------------------------- void KeyExpansion(unsigned char *expandkey) { unsigned char i; unsigned char *key = AES_Key; // Copy key to start of expanded key. i = KEYLENGTH; do { *expandkey = *key; expandkey++; key++; } while (--i); // Prepare last 4 bytes of key in temp. expandkey -= 4; Ktemp[0] = *(expandkey++); Ktemp[1] = *(expandkey++); Ktemp[2] = *(expandkey++); Ktemp[3] = *(expandkey++); Rcon[0]=0x01; Rcon[1]=0x00; Rcon[2]=0x00; Rcon[3]=0x00; // Expand key. i = KEYLENGTH; while (i < BLOCKSIZE *(ROUNDS + 1)) { // Are we at the start of a multiple of the key size? if ((i % KEYLENGTH) == 0) { CycleLeft(Ktemp); // Cycle left once. SubBytes(Ktemp, 4); // Substitute each byte. XORBytes(Ktemp, Rcon, 4); // Add constant in GF(2). *Rcon = Multiply(*Rcon, 0x02); } // Add bytes in GF(2) one KEYLENGTH away. XORBytes(Ktemp, expandkey - KEYLENGTH, 4); // Copy result to current 4 bytes. *(expandkey++) = Ktemp[0]; *(expandkey++) = Ktemp[1]; *(expandkey++) = Ktemp[2]; *(expandkey++) = Ktemp[3]; i += 4; // Next 4 bytes. } } //--------------------------------------------------------------------------- void Cipher(unsigned char *block,unsigned char *expandkey) { unsigned char round = ROUNDS - 1; XORBytes(block, expandkey, 16); expandkey += BLOCKSIZE; do { SubBytes(block, 16); ShiftRows(block); MixColumns(block); XORBytes(block, expandkey, 16); expandkey += BLOCKSIZE; } while (--round); SubBytes(block, 16); ShiftRows(block); XORBytes(block, expandkey, 16); } //--------------------------------------------------------------------------- void InvCipher(unsigned char *block,unsigned char *expandkey) { unsigned char round = ROUNDS - 1; expandkey += BLOCKSIZE * ROUNDS; XORBytes(block, expandkey, 16); expandkey -= BLOCKSIZE; do { InvShiftRows(block); InvSubBytesAndXOR(block, expandkey, 16); expandkey -= BLOCKSIZE; InvMixColumns(block); } while (--round); InvShiftRows(block); InvSubBytesAndXOR(block, expandkey, 16); } //--------------------------------------------------------------------------- // creat sBox and sBoxInv table and use seed key to creat expandkey table //--------------------------------------------------------------------------- void AES_Init(void) { KeyExpansion(AES_Expand_Key); } //--------------------------------------------------------------------------- // buffer : string need to encrypt // blocklen : multiple of 16 //--------------------------------------------------------------------------- void AES(unsigned char *buffer, int blocklen) { int i; for (i = 0; i < blocklen; i += 16) { Cipher(buffer + i,AES_Expand_Key); } } //--------------------------------------------------------------------------- // buffer : string need to encrypt // blocklen : multiple of 16 //--------------------------------------------------------------------------- void UnAES(unsigned char *buffer, int blocklen) { int i; for (i = 0; i < blocklen; i += 16) { InvCipher(buffer + i,AES_Expand_Key); } }
One thought on “C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法”
C/C++ 實作AES128加解密使用SBOX方法