C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法

C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法

C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法


因為單晶片有用AES128資料加密,所以要找尋可以在PC端解密的程式

//---------------------------------------------------------------------------

#define BPOLY 0x1b // Lower 8 bits of (x^8+x^4+x^3+x+1), ie. (x^4+x^3+x+1).
#define BLOCKSIZE 16 // Block size in number of bytes.				// Nb
#define KEYBITS 128 // Use AES128.		// Nk
#define ROUNDS 10 // Number of rounds.   // Nr
#define KEYLENGTH 16 // Key length in number of bytes.
#define EXPANDED_KEY_SIZE (BLOCKSIZE * (ROUNDS+1)) // 176, 208 or 240 bytes.

unsigned char AES_Expand_Key[EXPANDED_KEY_SIZE]; // 176 bytes , expand key table
unsigned char AES_Key[KEYLENGTH] = {0x25, 0x48, 0x36, 0x38, 0x6A, 0x88, 0x59, 0x4A, 0x63, 0x87, 0x5A, 0x6F, 0x9E, 0xCD, 0xAC, 0x01}; // 16 bytes

//---------------------------------------------------------------------------
// Precomputed lookup table for the SBox
const unsigned char sBox[256] = 
{
	0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,  //
	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,  //
	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,  //
	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,  //
	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,  //
	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,  //
	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,  //
	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,  //
	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,  //
	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,  //
	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,  //
	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,  //
	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,  //
	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,  //
	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,  //
	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16  //
};

//---------------------------------------------------------------------------
// Precomputed lookup table for the inverse SBox
const unsigned char sBoxInv[256] =
{
	0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,  //
	0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,  //
	0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,  //
	0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,  //
	0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,  //
	0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,  //
	0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,  //
	0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,  //
	0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,  //
	0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,  //
	0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,  //
	0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,  //
	0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,  //
	0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,  //
	0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,  //
	0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d  //
};

// Prepare first row of matrix twice, to eliminate need for cycling.
const unsigned char MixRow[8] =
	{
		0x02, 0x03, 0x01, 0x01, 0x02, 0x03, 0x01, 0x01
	};

// The round constants used in subkey expansion .
static unsigned char Rcon[4];
static unsigned char Ktemp[4];

//---------------------------------------------------------------------------
// copy count bytes
//---------------------------------------------------------------------------
void CopyBytes(unsigned char *to, unsigned char *from, unsigned char count)
{
	do
	{
		*to =  *from;
		to++;
		from++;
	}
	while (--count);
}

//---------------------------------------------------------------------------
unsigned char Multiply(unsigned char num, unsigned char factor)
{
	unsigned char mask = 1;
	unsigned char result = 0;

	while (mask != 0)
	{
		// Check bit of factor given by mask.   
		if (mask &factor)
		{
			// Add current multiple of num in GF(2).   
			result ^= num;
		}

		// Shift mask to indicate next bit.   
		mask <<= 1;

		// Double num.   
		num = (num << 1) ^ (num &0x80 ? BPOLY : 0);
	}

	return result;
}

//---------------------------------------------------------------------------
unsigned char DotProduct(unsigned char *vector1, unsigned char *vector2)
{
	unsigned char result = 0;

	result ^= Multiply(*vector1++,  *vector2++);
	result ^= Multiply(*vector1++,  *vector2++);
	result ^= Multiply(*vector1++,  *vector2++);
	result ^= Multiply(*vector1,  *vector2);

	return result;
}

//---------------------------------------------------------------------------
void MixColumn(unsigned char *column)
{
	// Take dot products of each matrix row and the column vector.
	Ktemp[0] = DotProduct((unsigned char *)(MixRow + 0), column);
	Ktemp[1] = DotProduct((unsigned char *)(MixRow + 3), column);
	Ktemp[2] = DotProduct((unsigned char *)(MixRow + 2), column);
	Ktemp[3] = DotProduct((unsigned char *)(MixRow + 1), column);

    CopyBytes(column,Ktemp,4);
}

//---------------------------------------------------------------------------
// This routine applies the MixColumns diffusion operator to the whole
// state matrix. The code is used for both encryption and decryption.
//---------------------------------------------------------------------------
void MixColumns(unsigned char *state)
{
	MixColumn(state + 0 * 4);
	MixColumn(state + 1 * 4);
	MixColumn(state + 2 * 4);
	MixColumn(state + 3 * 4);
}

//---------------------------------------------------------------------------
// shift the data left
//---------------------------------------------------------------------------
void CycleLeft(unsigned char *row)
{
	// Cycle 4 bytes in an array left once.
	unsigned char temp = row[0];
	row[0] = row[1];
	row[1] = row[2];
	row[2] = row[3];
	row[3] = temp;
}

//---------------------------------------------------------------------------
// shift the data left one bit according to MSB
//---------------------------------------------------------------------------
unsigned char shift1bit(unsigned char input)
{
	unsigned char b = 0;
	if (input &0x80)
	{
		b = BPOLY;
	}
	input = input << 1;
	b = input ^ b;
	return b;

}

//---------------------------------------------------------------------------
void InvMixColumn(unsigned char *column)
{
	unsigned char r_mix0, r_mix1, r_mix2, r_mix3;

	r_mix0 = column[1] ^ column[2] ^ column[3];
	r_mix1 = column[0] ^ column[2] ^ column[3];
	r_mix2 = column[0] ^ column[1] ^ column[3];
	r_mix3 = column[0] ^ column[1] ^ column[2];

	column[0] = shift1bit(column[0]);
	column[1] = shift1bit(column[1]);
	column[2] = shift1bit(column[2]);
	column[3] = shift1bit(column[3]);

	r_mix0 ^= column[0] ^ column[1];
	r_mix1 ^= column[1] ^ column[2];
	r_mix2 ^= column[2] ^ column[3];
	r_mix3 ^= column[0] ^ column[3];

	column[0] = shift1bit(column[0]);
	column[1] = shift1bit(column[1]);
	column[2] = shift1bit(column[2]);
	column[3] = shift1bit(column[3]);

	r_mix0 ^= column[0] ^ column[2];
	r_mix1 ^= column[1] ^ column[3];
	r_mix2 ^= column[0] ^ column[2];
	r_mix3 ^= column[1] ^ column[3];

	column[0] = shift1bit(column[0]);
	column[1] = shift1bit(column[1]);
	column[2] = shift1bit(column[2]);
	column[3] = shift1bit(column[3]);

	column[0] ^= column[1] ^ column[2] ^ column[3];
	r_mix0 ^= column[0];
	r_mix1 ^= column[0];
	r_mix2 ^= column[0];
	r_mix3 ^= column[0];

	column[0] = r_mix0;
	column[1] = r_mix1;
	column[2] = r_mix2;
	column[3] = r_mix3;
}

//---------------------------------------------------------------------------
void InvMixColumns(unsigned char *state)
{
	InvMixColumn(state + 0 * 4);
	InvMixColumn(state + 1 * 4);
	InvMixColumn(state + 2 * 4);
	InvMixColumn(state + 3 * 4);
}

//---------------------------------------------------------------------------
// This routine is a substitution operation that takes each byte in the
// State matrix and substitutes a new byte deternined by the Sbox table.
//---------------------------------------------------------------------------
void SubBytes(unsigned char *bytes, unsigned char count)
{
	do
	{
		*bytes = sBox[ *bytes]; // Substitute every byte in state.
		bytes++;
	}
	while (--count);
}

//---------------------------------------------------------------------------
void InvSubBytesAndXOR(unsigned char *bytes, unsigned char *key, unsigned char count)
{
	do
	{
		*bytes = sBoxInv[ *bytes] ^  *key; // Inverse substitute every byte in state and add key.
		bytes++;
		key++;
	}
	while (--count);
}

//---------------------------------------------------------------------------
// This routine is a permutation operation that rotates bytes in the
// State matrix to the left.
//---------------------------------------------------------------------------
void ShiftRows(unsigned char *state)
{
	unsigned char temp;

	// Note: State is arranged column by column.

	// Cycle second row left one time.
	temp = state[1+0 * 4];
	state[1+0 * 4] = state[1+1 * 4];
	state[1+1 * 4] = state[1+2 * 4];
	state[1+2 * 4] = state[1+3 * 4];
	state[1+3 * 4] = temp;

	// Cycle third row left two times.   
	temp = state[2+0 * 4];
	state[2+0 * 4] = state[2+2 * 4];
	state[2+2 * 4] = temp;
	temp = state[2+1 * 4];
	state[2+1 * 4] = state[2+3 * 4];
	state[2+3 * 4] = temp;

	// Cycle fourth row left three times, ie. right once.   
	temp = state[3+3 * 4];
	state[3+3 * 4] = state[3+2 * 4];
	state[3+2 * 4] = state[3+1 * 4];
	state[3+1 * 4] = state[3+0 * 4];
	state[3+0 * 4] = temp;
}

//---------------------------------------------------------------------------
// This routine is a permutation operation that rotates bytes in the
// State matrix to the right.
//---------------------------------------------------------------------------
void InvShiftRows(unsigned char *state)
{
	unsigned char temp;

	// Note: State is arranged column by column.

	// Cycle second row right one time.
	temp = state[1+3 * 4];
	state[1+3 * 4] = state[1+2 * 4];
	state[1+2 * 4] = state[1+1 * 4];
	state[1+1 * 4] = state[1+0 * 4];
	state[1+0 * 4] = temp;

	// Cycle third row right two times.   
	temp = state[2+0 * 4];
	state[2+0 * 4] = state[2+2 * 4];
	state[2+2 * 4] = temp;
	temp = state[2+1 * 4];
	state[2+1 * 4] = state[2+3 * 4];
	state[2+3 * 4] = temp;

	// Cycle fourth row right three times, ie. left once.
	temp = state[3+0 * 4];
	state[3+0 * 4] = state[3+1 * 4];
	state[3+1 * 4] = state[3+2 * 4];
	state[3+2 * 4] = state[3+3 * 4];
	state[3+3 * 4] = temp;
}


//---------------------------------------------------------------------------
// do count times XOR calculation
//---------------------------------------------------------------------------
void XORBytes(unsigned char *bytes1, unsigned char *bytes2, unsigned char count)
{
	do
	{
		*bytes1 ^=  *bytes2; // Add in GF(2), ie. XOR.
		bytes1++;
		bytes2++;
	}
	while (--count);
}

//---------------------------------------------------------------------------
// The following routine implements the Rijndael key expansion algorithm.
// Note: the key expansion is necessary for both encryption and decryption.
//---------------------------------------------------------------------------
void KeyExpansion(unsigned char *expandkey)
{
	unsigned char i;
	unsigned char *key = AES_Key;

	// Copy key to start of expanded key.
	i = KEYLENGTH;
	do
	{
		*expandkey =  *key;
		expandkey++;
		key++;
	}
	while (--i);

	// Prepare last 4 bytes of key in temp.
	expandkey -= 4;
	Ktemp[0] = *(expandkey++);
	Ktemp[1] = *(expandkey++);
	Ktemp[2] = *(expandkey++);
	Ktemp[3] = *(expandkey++);

    Rcon[0]=0x01;
    Rcon[1]=0x00;
    Rcon[2]=0x00;
    Rcon[3]=0x00;

	// Expand key.
	i = KEYLENGTH;
	while (i < BLOCKSIZE *(ROUNDS + 1))
	{
		// Are we at the start of a multiple of the key size?
		if ((i % KEYLENGTH) == 0)
		{
			CycleLeft(Ktemp); // Cycle left once.
			SubBytes(Ktemp, 4); // Substitute each byte.
			XORBytes(Ktemp, Rcon, 4); // Add constant in GF(2).
			*Rcon = Multiply(*Rcon, 0x02);
		}

		// Add bytes in GF(2) one KEYLENGTH away.
		XORBytes(Ktemp, expandkey - KEYLENGTH, 4);

		// Copy result to current 4 bytes.
		*(expandkey++) = Ktemp[0];
		*(expandkey++) = Ktemp[1];
		*(expandkey++) = Ktemp[2];
		*(expandkey++) = Ktemp[3];

		i += 4; // Next 4 bytes.
	}
}

//---------------------------------------------------------------------------
void Cipher(unsigned char *block,unsigned char *expandkey)
{
	unsigned char round = ROUNDS - 1;

	XORBytes(block, expandkey, 16);
	expandkey += BLOCKSIZE;

	do
	{
		SubBytes(block, 16);
		ShiftRows(block);
		MixColumns(block);
		XORBytes(block, expandkey, 16);
		expandkey += BLOCKSIZE;
	}
	while (--round);

	SubBytes(block, 16);
	ShiftRows(block);
	XORBytes(block, expandkey, 16);
}

//---------------------------------------------------------------------------
void InvCipher(unsigned char *block,unsigned char *expandkey)
{
	unsigned char round = ROUNDS - 1;

	expandkey += BLOCKSIZE * ROUNDS;
	XORBytes(block, expandkey, 16);
	expandkey -= BLOCKSIZE;
	do
	{
		InvShiftRows(block);
		InvSubBytesAndXOR(block, expandkey, 16);
		expandkey -= BLOCKSIZE;
		InvMixColumns(block);
	}
	while (--round);

	InvShiftRows(block);
	InvSubBytesAndXOR(block, expandkey, 16);
}

//---------------------------------------------------------------------------
// creat sBox and sBoxInv table and use seed key to creat expandkey table
//---------------------------------------------------------------------------
void AES_Init(void)
{
	KeyExpansion(AES_Expand_Key);
}

//---------------------------------------------------------------------------
// buffer : string need to encrypt
// blocklen : multiple of 16
//---------------------------------------------------------------------------
void AES(unsigned char *buffer, int blocklen)
{
	int i;

	for (i = 0; i < blocklen; i += 16)
	{
		Cipher(buffer + i,AES_Expand_Key);
	}
}

//---------------------------------------------------------------------------
// buffer : string need to encrypt
// blocklen : multiple of 16
//---------------------------------------------------------------------------
void UnAES(unsigned char *buffer, int blocklen)
{
	int i;

	for (i = 0; i < blocklen; i += 16)
	{
		InvCipher(buffer + i,AES_Expand_Key);
	}
}

One thought on “C++ BUILDER(BCB6) 實作AES128加解密使用SBOX方法

發表迴響

你的電子郵件位址並不會被公開。 必要欄位標記為 *