用 Python 實現十大經典排序演算法
用 Python 實現十大經典排序演算法
資料來源: https://mp.weixin.qq.com/s/dOWFfv_8Q6vy5usX0UB9DA
CODE:
def bubble_sort (lst) :
n = len(lst)
for i in range(n):
for j in range( 1 , n - i):
if lst[j - 1 ] > lst[j]:
lst[j - 1 ], lst[j] = lst[j], lst[j - 1 ]
return lst
def selection_sort (lst) :
for i in range(len(lst) - 1 ):
min_index = i
for j in range(i + 1 , len(lst)):
if lst[j] < lst[min_index]:
min_index = j
lst[i], lst[min_index] = lst[min_index], lst[i]
return lst
def quick_sort (lst) :
n = len(lst)
if n <= 1 :
return lst
baseline = lst[ 0 ]
left = [lst[i] for i in range( 1 , len(lst)) if lst[i] < baseline]
right = [lst[i] for i in range( 1 , len(lst)) if lst[i] >= baseline]
return quick_sort(left) + [baseline] + quick_sort(right)
def merge_sort (lst) :
def merge (left,right) :
i = 0
j = 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else :
result.append(right[j])
j += 1
result = result + left[i:] + right[j:]
return result
n = len(lst)
if n <= 1 :
return lst
mid = n // 2
left = merge_sort(lst[:mid])
right = merge_sort(lst[mid:])
return merge(left,right)
def heap_sort (lst) :
def adjust_heap (lst, i, size) :
left_index = 2 * i + 1
right_index = 2 * i + 2
largest_index = i
if left_index < size and lst[left_index] > lst[largest_index]:
largest_index = left_index
if right_index < size and lst[right_index] > lst[largest_index]:
largest_index = right_index
if largest_index != i:
lst[largest_index], lst[i] = lst[i], lst[largest_index]
adjust_heap(lst, largest_index, size)
def built_heap (lst, size) :
for i in range(len(lst)// 2 )[:: -1 ]:
adjust_heap(lst, i, size)
size = len(lst)
built_heap(lst, size)
for i in range(len(lst))[:: -1 ]:
lst[ 0 ], lst[i] = lst[i], lst[ 0 ]
adjust_heap(lst, 0 , i)
return lst
def insertion_sort (lst) :
for i in range(len(lst) - 1 ):
cur_num, pre_index = lst[i+ 1 ], i
while pre_index >= 0 and cur_num < lst[pre_index]:
lst[pre_index + 1 ] = lst[pre_index]
pre_index -= 1
lst[pre_index + 1 ] = cur_num
return lst
def shell_sort (lst) :
n = len(lst)
gap = n // 2
while gap > 0 :
for i in range(gap, n):
for j in range(i, gap - 1 , -gap):
if lst[j] < lst[j - gap]:
lst[j], lst[j - gap] = lst[j - gap], lst[j]
else :
break
gap //= 2
return lst
def counting_sort (lst) :
nums_min = min(lst)
bucket = [ 0 ] * (max(lst) + 1 - nums_min)
for num in lst:
bucket[num - nums_min] += 1
i = 0
for j in range(len(bucket)):
while bucket[j] > 0 :
lst[i] = j + nums_min
bucket[j] -= 1
i += 1
return lst
def bucket_sort (lst, defaultBucketSize= 4 ) :
maxVal, minVal = max(lst), min(lst)
bucketSize = defaultBucketSize
bucketCount = (maxVal - minVal) // bucketSize + 1
buckets = [[] for i in range(bucketCount)]
for num in lst:
buckets[(num - minVal) // bucketSize].append(num)
lst.clear()
for bucket in buckets:
bubble_sort(bucket)
lst.extend(bucket)
return lst
# LSD Radix Sort
def radix_sort (lst) :
mod = 10
div = 1
mostBit = len(str(max(lst)))
buckets = [[] for row in range(mod)]
while mostBit:
for num in lst:
buckets[num // div % mod].append(num)
i = 0
for bucket in buckets:
while bucket:
lst[i] = bucket.pop( 0 )
i += 1
div *= 10
mostBit -= 1
return lst
