Python+OpenCV —— 全局二值化,局部二值化與自訂義二值化
Python+OpenCV —— 全局二值化,局部二值化與自訂義二值化
資料來源: https://blog.csdn.net/weixin_43860783/article/details/110471280
code:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
def global_binary(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
plt.hist(gray.ravel(), 256, [0, 256])
plt.show()
"""
src:输入图像
thresh:设置阈值,当进行二值化时,大于该值的为1,小于归0
maxval:maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding types.最大像素值
type:所采用的方法
注意:当设置了自动搜索阈值的方法时(如cv.THRESH_OTSU或者cv.THRESH_TRIANGLE),手动设置的阈值将不生效
"""
thr, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
print("threshold:{}".format(thr))
cv.imshow("binary", binary)
def local_binary(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
"""
src:输入图像
maxValue:同上
adaptiveMethod:自适应方法,常用的有ADAPTIVE_THRESH_MEAN_C以及ADAPTIVE_THRESH_GAUSSIAN_C,分别为均值发育高斯均值法
The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
thresholdType: must be either #THRESH_BINARY or #THRESH_BINARY_INV,只能是二值化或INV(反二值化)
blockSize:局部二值的参考块大小
C : Constant subtracted from the mean or weighted mean. Normally, it is positive but may be zero or negative as well.
对每个块,结算得到的阈值减去常数C再来进行二值化,用于减小特殊值带来的误差
"""
dst = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)
cv.imshow("local_binary", dst)
def custom_binary(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
h, w = gray.shape[:2]
print("h:{}, w:{}".format(h, w))
mean = np.sum(gray.ravel()) / (h*w)
thr, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
print("threshold:{}".format(thr))
cv.imshow("custom_binary", binary)
src = cv.imread("data/lena.jpg")
cell = cv.imread("data/cell.jpg")
# cv.imshow("original", cell)
# global_binary(cell)
# local_binary(src)
custom_binary(src)
cv.waitKey(0)
cv.destroyAllWindows()
