C# 實作AES128加解密(SBOX+Rijndael)兩種方法
C# 實作AES128加解密(SBOX+Rijndael)兩種方法
因為單晶片有用AES128資料加密,所以要找尋可以在PC端解密的程式
收集了兩個版本,資料來源分別如下
SBOX版本:https://github.com/yunuskiran/DynamicAES/blob/master/UsingForm
Rijndael版本:https://sites.google.com/site/elfenlog/home/microsoft/c-_1/-c-jia-mi-jie-mi-pian/yongc-shi-xianaes-jia-mi-suan-fa?tmpl=%2Fsystem%2Fapp%2Ftemplates%2Fprint%2F&showPrintDialog=1
最後SBOX和單晶片一致
GITHUB: https://github.com/jash-git/CS-AES128-SBOX-Rijndael
AES.cs
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace CS_BYTES_AES_test { public class Aes // Advanced Encryption Standard { public enum KeySize { Bits128, Bits192, Bits256 }; // key size, in bits, for construtor private int Nb; // block size in 32-bit words. Always 4 for AES. (128 bits). private int Nk; // key size in 32-bit words. 4, 6, 8. (128, 192, 256 bits). private int Nr; // number of rounds. 10, 12, 14. private byte[] key; // the seed key. size will be 4 * keySize from ctor. private byte[,] Sbox; // Substitution box private byte[,] iSbox; // inverse Substitution box private byte[,] Dbox; private byte[,] iDbox; private byte[,] w; // key schedule array. private byte[,] Rcon; // Round constants. private byte[,] State; // State matrix bool mode = true; private byte size; private char Source; private int round; public Aes(KeySize keySize, byte[] keyBytes) { SetNbNkNr(keySize); this.key = new byte[this.Nk * 4]; // 16, 24, 32 bytes keyBytes.CopyTo(this.key, 0); BuildSbox(); BuildInvSbox(); InitdBox(); BuildRcon(); KeyExpansion(); // expand the seed key into a key schedule and store in w } private void InitdBox() { this.Dbox = new byte[16, 16]; this.iDbox = new byte[16, 16]; } // Aes constructor private void BuildDbox(byte[,] statebox, int round) { byte[] Temp = new byte[16]; BuildLCS(ref Temp, round); byte AddByte = 0, t = 0; for (byte k = 0; k < 16; k += 2) { AddByte <<= 1; t = (byte)(Temp[k] & 0x01); AddByte |= t; } for (byte i = 0; i < 16; i++) { for (byte r = 0; r < 4; ++r) // copy Key into temp[] for (byte c = 0; c < 4; Temp[r * 4 + c] = w[((Nr - round) * 4) + c, r], ++c) ; for (byte j = 0; j < 16; j++) { byte row, col, y = 0; this.Dbox[i, j] = (byte)((int)statebox[i, j] ^ (int)AddByte); row = (byte)(this.Dbox[i, j] >> 4); col = (byte)(this.Dbox[i, j] & 0x0f); iDbox[row, col] = (byte)((int)(i << 4) | (int)j); } } } private void BuildLCS(ref byte[] Data, int times) { for (int i = 0; i < times; i++) { byte temp = Data[0]; for (int j = 0; j < 15; Data[j] = Data[j + 1], j++) ; Data[15] = temp; } } public void Cipher(byte[] input, byte[] output) // encipher 16-bit input { // state = input this.State = new byte[4, Nb]; // always [4,4] for (int i = 0; i < (4 * Nb); ++i) { this.State[i % 4, i / 4] = input[i]; } AddRoundKey(0); int round; for (round = 1; round <= (Nr - 1); ++round) // main round loop { SubBytes(round); ShiftRows(); MixColumns(); AddRoundKey(round); } // main round loop SubBytes(Nr); ShiftRows(); AddRoundKey(Nr); // output = state for (int i = 0; i < (4 * Nb); ++i) { output[i] = this.State[i % 4, i / 4]; } } // Cipher() public void InvCipher(byte[] input, byte[] output) // decipher 16-bit input { // state = input this.State = new byte[4, Nb]; // always [4,4] for (int i = 0; i < (4 * Nb); ++i) { this.State[i % 4, i / 4] = input[i]; } AddRoundKey(Nr); for (int round = Nr - 1; round >= 1; --round) // main round loop { InvShiftRows(); InvSubBytes(round + 1); AddRoundKey(round); InvMixColumns(); } // end main round loop for InvCipher InvShiftRows(); InvSubBytes(1); AddRoundKey(0); // output = state for (int i = 0; i < (4 * Nb); ++i) { output[i] = this.State[i % 4, i / 4]; } } // InvCipher() private void SetNbNkNr(KeySize keySize) { this.Nb = 4; // block size always = 4 words = 16 bytes = 128 bits for AES if (keySize == KeySize.Bits128) { this.Nk = 4; // key size = 4 words = 16 bytes = 128 bits this.Nr = 10; // rounds for algorithm = 10 } else if (keySize == KeySize.Bits192) { this.Nk = 6; // 6 words = 24 bytes = 192 bits this.Nr = 12; } else if (keySize == KeySize.Bits256) { this.Nk = 8; // 8 words = 32 bytes = 256 bits this.Nr = 14; } } // SetNbNkNr() private void BuildSbox() { this.Sbox = new byte[16, 16] { // populate the Sbox matrix /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /*0*/ {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76}, /*1*/ {0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0}, /*2*/ {0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15}, /*3*/ {0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75}, /*4*/ {0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84}, /*5*/ {0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf}, /*6*/ {0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8}, /*7*/ {0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2}, /*8*/ {0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73}, /*9*/ {0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb}, /*a*/ {0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79}, /*b*/ {0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08}, /*c*/ {0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a}, /*d*/ {0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e}, /*e*/ {0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf}, /*f*/ {0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16} }; } // BuildSbox() private void BuildInvSbox() { this.iSbox = new byte[16, 16] { // populate the iSbox matrix /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /*0*/ {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb}, /*1*/ {0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb}, /*2*/ {0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e}, /*3*/ {0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25}, /*4*/ {0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92}, /*5*/ {0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84}, /*6*/ {0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06}, /*7*/ {0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b}, /*8*/ {0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73}, /*9*/ {0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e}, /*a*/ {0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b}, /*b*/ {0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4}, /*c*/ {0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f}, /*d*/ {0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef}, /*e*/ {0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61}, /*f*/ {0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d} }; } // BuildInvSbox() private void BuildRcon() { this.Rcon = new byte[11, 4] { {0x00, 0x00, 0x00, 0x00}, {0x01, 0x00, 0x00, 0x00}, {0x02, 0x00, 0x00, 0x00}, {0x04, 0x00, 0x00, 0x00}, {0x08, 0x00, 0x00, 0x00}, {0x10, 0x00, 0x00, 0x00}, {0x20, 0x00, 0x00, 0x00}, {0x40, 0x00, 0x00, 0x00}, {0x80, 0x00, 0x00, 0x00}, {0x1b, 0x00, 0x00, 0x00}, {0x36, 0x00, 0x00, 0x00} }; } // BuildRcon() private void AddRoundKey(int round) { for (int r = 0; r < 4; ++r) { for (int c = 0; c < 4; ++c) { this.State[r, c] = (byte)((int)this.State[r, c] ^ (int)w[(round * 4) + c, r]); } } } // AddRoundKey() private void SubBytes(int round) { if (mode) BuildDbox(this.Sbox, round); for (int r = 0; r < 4; ++r) { for (int c = 0; c < 4; ++c) { if (mode) this.State[r, c] = this.Dbox[(this.State[r, c] >> 4), (this.State[r, c] & 0x0f)]; else this.State[r, c] = this.Sbox[(this.State[r, c] >> 4), (this.State[r, c] & 0x0f)]; } } } // SubBytes private void InvSubBytes(int round) { if (mode) BuildDbox(this.Sbox, round); for (int r = 0; r < 4; ++r) { for (int c = 0; c < 4; ++c) { if (mode) this.State[r, c] = this.iDbox[(this.State[r, c] >> 4), (this.State[r, c] & 0x0f)]; else this.State[r, c] = this.iSbox[(this.State[r, c] >> 4), (this.State[r, c] & 0x0f)]; } } } // InvSubBytes private void ShiftRows() { byte[,] temp = new byte[4, 4]; for (int r = 0; r < 4; ++r) // copy State into temp[] { for (int c = 0; c < 4; ++c) { temp[r, c] = this.State[r, c]; } } for (int r = 1; r < 4; ++r) // shift temp into State { for (int c = 0; c < 4; ++c) { this.State[r, c] = temp[r, (c + r) % Nb]; } } } // ShiftRows() private void InvShiftRows() { byte[,] temp = new byte[4, 4]; for (int r = 0; r < 4; ++r) // copy State into temp[] { for (int c = 0; c < 4; ++c) { temp[r, c] = this.State[r, c]; } } for (int r = 1; r < 4; ++r) // shift temp into State { for (int c = 0; c < 4; ++c) { this.State[r, (c + r) % Nb] = temp[r, c]; } } } // InvShiftRows() private void MixColumns() { byte[,] temp = new byte[4, 4]; for (int r = 0; r < 4; ++r) // copy State into temp[] { for (int c = 0; c < 4; ++c) { temp[r, c] = this.State[r, c]; } } for (int c = 0; c < 4; ++c) { this.State[0, c] = (byte)((int)gfmultby02(temp[0, c]) ^ (int)gfmultby03(temp[1, c]) ^ (int)gfmultby01(temp[2, c]) ^ (int)gfmultby01(temp[3, c])); this.State[1, c] = (byte)((int)gfmultby01(temp[0, c]) ^ (int)gfmultby02(temp[1, c]) ^ (int)gfmultby03(temp[2, c]) ^ (int)gfmultby01(temp[3, c])); this.State[2, c] = (byte)((int)gfmultby01(temp[0, c]) ^ (int)gfmultby01(temp[1, c]) ^ (int)gfmultby02(temp[2, c]) ^ (int)gfmultby03(temp[3, c])); this.State[3, c] = (byte)((int)gfmultby03(temp[0, c]) ^ (int)gfmultby01(temp[1, c]) ^ (int)gfmultby01(temp[2, c]) ^ (int)gfmultby02(temp[3, c])); } } // MixColumns private void InvMixColumns() { byte[,] temp = new byte[4, 4]; for (int r = 0; r < 4; ++r) // copy State into temp[] { for (int c = 0; c < 4; ++c) { temp[r, c] = this.State[r, c]; } } for (int c = 0; c < 4; ++c) { this.State[0, c] = (byte)((int)gfmultby0e(temp[0, c]) ^ (int)gfmultby0b(temp[1, c]) ^ (int)gfmultby0d(temp[2, c]) ^ (int)gfmultby09(temp[3, c])); this.State[1, c] = (byte)((int)gfmultby09(temp[0, c]) ^ (int)gfmultby0e(temp[1, c]) ^ (int)gfmultby0b(temp[2, c]) ^ (int)gfmultby0d(temp[3, c])); this.State[2, c] = (byte)((int)gfmultby0d(temp[0, c]) ^ (int)gfmultby09(temp[1, c]) ^ (int)gfmultby0e(temp[2, c]) ^ (int)gfmultby0b(temp[3, c])); this.State[3, c] = (byte)((int)gfmultby0b(temp[0, c]) ^ (int)gfmultby0d(temp[1, c]) ^ (int)gfmultby09(temp[2, c]) ^ (int)gfmultby0e(temp[3, c])); } } // InvMixColumns private static byte gfmultby01(byte b) { return b; } private static byte gfmultby02(byte b) { if (b < 0x80) return (byte)(int)(b << 1); else return (byte)((int)(b << 1) ^ (int)(0x1b)); } private static byte gfmultby03(byte b) { return (byte)((int)gfmultby02(b) ^ (int)b); } private static byte gfmultby09(byte b) { return (byte)((int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)b); } private static byte gfmultby0b(byte b) { return (byte)((int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)gfmultby02(b) ^ (int)b); } private static byte gfmultby0d(byte b) { return (byte)((int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)gfmultby02(gfmultby02(b)) ^ (int)(b)); } private static byte gfmultby0e(byte b) { return (byte)((int)gfmultby02(gfmultby02(gfmultby02(b))) ^ (int)gfmultby02(gfmultby02(b)) ^ (int)gfmultby02(b)); } private void KeyExpansion() { this.w = new byte[Nb * (Nr + 1), 4]; // 4 columns of bytes corresponds to a word for (int row = 0; row < Nk; ++row) { this.w[row, 0] = this.key[4 * row]; this.w[row, 1] = this.key[4 * row + 1]; this.w[row, 2] = this.key[4 * row + 2]; this.w[row, 3] = this.key[4 * row + 3]; } byte[] temp = new byte[4]; for (int row = Nk; row < Nb * (Nr + 1); ++row) { temp[0] = this.w[row - 1, 0]; temp[1] = this.w[row - 1, 1]; temp[2] = this.w[row - 1, 2]; temp[3] = this.w[row - 1, 3]; if (row % Nk == 0) { temp = SubWord(RotWord(temp)); temp[0] = (byte)((int)temp[0] ^ (int)this.Rcon[row / Nk, 0]); temp[1] = (byte)((int)temp[1] ^ (int)this.Rcon[row / Nk, 1]); temp[2] = (byte)((int)temp[2] ^ (int)this.Rcon[row / Nk, 2]); temp[3] = (byte)((int)temp[3] ^ (int)this.Rcon[row / Nk, 3]); } else if (Nk > 6 && (row % Nk == 4)) { temp = SubWord(temp); } // w[row] = w[row-Nk] xor temp this.w[row, 0] = (byte)((int)this.w[row - Nk, 0] ^ (int)temp[0]); this.w[row, 1] = (byte)((int)this.w[row - Nk, 1] ^ (int)temp[1]); this.w[row, 2] = (byte)((int)this.w[row - Nk, 2] ^ (int)temp[2]); this.w[row, 3] = (byte)((int)this.w[row - Nk, 3] ^ (int)temp[3]); } // for loop } // KeyExpansion() private byte[] SubWord(byte[] word) { byte[] result = new byte[4]; result[0] = this.Sbox[word[0] >> 4, word[0] & 0x0f]; result[1] = this.Sbox[word[1] >> 4, word[1] & 0x0f]; result[2] = this.Sbox[word[2] >> 4, word[2] & 0x0f]; result[3] = this.Sbox[word[3] >> 4, word[3] & 0x0f]; return result; } private byte[] RotWord(byte[] word) { byte[] result = new byte[4]; result[0] = word[1]; result[1] = word[2]; result[2] = word[3]; result[3] = word[0]; return result; } public void Dump() { Console.WriteLine("Nb = " + Nb + " Nk = " + Nk + " Nr = " + Nr); Console.WriteLine("\nThe key is \n" + DumpKey()); Console.WriteLine("\nThe Sbox is \n" + DumpTwoByTwo(Sbox)); Console.WriteLine("\nThe w array is \n" + DumpTwoByTwo(w)); Console.WriteLine("\nThe State array is \n" + DumpTwoByTwo(State)); } public string DumpKey() { string s = ""; for (int i = 0; i < key.Length; ++i) s += key[i].ToString("x2") + " "; return s; } public string DumpTwoByTwo(byte[,] a) { string s = ""; for (int r = 0; r < a.GetLength(0); ++r) { s += "[" + r + "]" + " "; for (int c = 0; c < a.GetLength(1); ++c) { s += a[r, c].ToString("x2") + " "; } s += "\n"; } return s; } } // class Aes }
Program.cs
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Security.Cryptography; using System.IO; namespace CS_BYTES_AES_test { class AESEncryption { //默认密钥向量 //36649AF26DDE0C3A0F1E2D3C4B5A6978 private static byte[] _key1 = { 0x36, 0x64, 0x9A, 0xF2, 0x6D, 0xDE, 0x0C, 0x3A, 0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78 }; /// <summary> /// AES加密算法 /// </summary> /// <param name="plainText">明文字符串</param> /// <param name="strKey">密钥</param> /// <returns>返回加密后的密文字节数组</returns> public static byte[] AESEncrypt(byte[] inputByteArray) { //分组加密算法 SymmetricAlgorithm des = Rijndael.Create(); //byte[] inputByteArray = Encoding.UTF8.GetBytes(plainText);//得到需要加密的字节数组 //设置密钥及密钥向量 des.Key = _key1;//Encoding.UTF8.GetBytes(strKey); des.IV = _key1; MemoryStream ms = new MemoryStream(); CryptoStream cs = new CryptoStream(ms, des.CreateEncryptor(), CryptoStreamMode.Write); cs.Write(inputByteArray, 0, inputByteArray.Length); cs.FlushFinalBlock(); byte[] cipherBytes = ms.ToArray();//得到加密后的字节数组 cs.Close(); ms.Close(); return cipherBytes; } /// <summary> /// AES解密 /// </summary> /// <param name="cipherText">密文字节数组</param> /// <param name="strKey">密钥</param> /// <returns>返回解密后的字符串</returns> public static byte[] AESDecrypt(byte[] cipherText) { SymmetricAlgorithm des = Rijndael.Create(); des.Key = _key1;//Encoding.UTF8.GetBytes(strKey); des.IV = _key1; byte[] decryptBytes = new byte[cipherText.Length]; MemoryStream ms = new MemoryStream(cipherText); CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(), CryptoStreamMode.Read); cs.Read(decryptBytes, 0, decryptBytes.Length); cs.Close(); ms.Close(); return decryptBytes; } } class Program { // // static void pause() { Console.Write("Press any key to continue . . . "); Console.ReadKey(true); } public static string ToHexString(byte[] bytes,String flag=",") // 0xae00cf => "AE00CF " { string hexString = string.Empty; if (bytes != null) { StringBuilder strB = new StringBuilder(); for (int i = 0; i < bytes.Length; i++) { strB.Append(bytes[i].ToString("X2")); strB.Append(flag); } hexString = strB.ToString(); } return hexString; } static void Main(string[] args) { /* byte[] inputByteArray = { 0xAA, 0x55, 0xBB, 0x66, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; byte[] outputByteArray = AESEncryption.AESEncrypt(inputByteArray); byte[] outputByteArray1 = AESEncryption.AESDecrypt(outputByteArray); */ //* Aes.KeySize keysize; keysize = Aes.KeySize.Bits128; byte[] inputByteArray = { 0xAA, 0x55, 0xBB, 0x66, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; byte[] _key1 = { 0x36, 0x64, 0x9A, 0xF2, 0x6D, 0xDE, 0x0C, 0x3A, 0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78 }; Aes a = new Aes(keysize, _key1); byte[] outputByteArray = new byte[16]; a.Cipher(inputByteArray, outputByteArray); byte[] outputByteArray1 = new byte[16]; a.InvCipher(outputByteArray, outputByteArray1); //*/ string hex2 = ToHexString(outputByteArray); string hex1 = ToHexString(outputByteArray1); Console.WriteLine("input - " + hex1); Console.WriteLine("output - " + hex2); pause(); } } }