在〈真的未定義?〉中,已經可以將 map(list(elems($1)($2)($3)))(elem => sub(elem)($1))
全部替換,完全使用箭號函式表示,這是這一系列文件想要達成的目標,不過,替換過程其實很無趣,替換的結果也如同密宗文字般難解。
為了便於理解,在之前的文件中,都會借助 JavaScript 語法提供的 let
,給予匿名函式一個名稱,從 lambda 演算的角度來看,像是放寬了限制,然而,也可以用另一個角度來看 let
,將之當成是語法蜜糖。例如,如果有個程式是這麼撰寫:
let addOne = n => n + 1;
console.log(addOne(1));
可以將之視為底下程式的語法糖:
console.log(
(addOne =>
addOne(1)
)(n => n + 1)
);
若是 let
宣告了兩個以上的名稱:
let addOne = n => n + 1;
let addTwo = n => addOne(addOne(n));
console.log(addTwo(1));
可以轉換為底下而得到相同的結果:
console.log(
(addOne =>
(addTwo =>
addTwo(1)
)(n => addOne(addOne(n)))
)(n => n + 1)
);
那麼遞迴呢?例如:
let fact = n => n < 2 ? 1 : n * fact(n - 1);
console.log(fact(5));
你不能直接這麼撰寫:
console.log(
(fact =>
fact(5)
)(n => n < 2 ? 1 : n * fact(n - 1));
);
對 n => n < 2 ? 1 : n * fact(n - 1)
來說,其中的 fact
在變數作用範圍中不存在,為了能解決這個問題,需要〈Y Combinator〉:
console.log(
(y =>
(fact =>
fact(5)
)(y(fact =>n => n < 2 ? 1 : n * fact(n - 1)))
)(f => (x => f(n => x(x)(n)))(x => f(n => x(x)(n))))
);
對 lambda 演算來說,實際上換行為縮排是不需要的,然而,這有助於閱讀,若想知道某個參數對應的函式是什麼,只要對照下側同一層的定義就可以了,當然,缺點就是巢狀的深度,let
越多的名稱,巢狀就越深,不過,相對於完全展開的寫法,可讀性還是算好一些…XD
可以試著將〈真的未定義?〉中最後使用 let
的版本改為底下:
console.log(array(
(y =>
(unit =>
(no_use =>
(yes =>
(no =>
(when =>
(not =>
(pair =>
(left =>
(right =>
(nil =>
(con =>
(head =>
(tail =>
(is_nil =>
(isEmpty =>
($0 =>
($1 =>
($2 =>
($3 =>
(is_$0 =>
($$ =>
(is_$$ =>
(succ =>
(add =>
(pair_succ =>
(prev =>
(sub =>
(len =>
(sum =>
(rcon =>
(rev =>
(reverse =>
(elems =>
(list =>
(map =>
map(list(elems($1)($2)($3)))(elem => sub(elem)($1))
)(y(map => l => f => when(isEmpty(l))(_ => nil)(_ => con(f(head(l)))(map(tail(l))(f)))))
)(es => reverse(es($$)))
)(rcon(nil))
)(l => rev(nil)(l))
)(y(rev => r => l => when(isEmpty(l))(_ => r)(_ => rev(con(head(l))(r))(tail(l)))))
)(y(rcon => t => h => when(is_$$(h))(_ => t)(_ => rcon(con(h)(t)))))
)(y(sum => l => when(isEmpty(l))(_ => $0)(_ => add(head(l))(sum(tail(l))))))
)(y(len => l => when(isEmpty(l))(_ => $0)(_ => add($1)(len(tail(l))))))
)(m => n => n(prev)(m))
)(n => left(n(pair_succ)(pair($0)($0))))
)(p => pair(right(p))(succ(right(p))))
)(m => n => n(succ)(m))
)(n => f => x => f(n(f)(x)))
)(n => n(_ => no)(no))
)(_ => _ => yes)
)(n => n(_ => no)(yes))
)(f => x => f(f(f(x))))
)(f => x => f(f(x)))
)(f => x => f(x))
)(_ => x => x)
)(is_nil)
)(l => l(_ => _ => no))
)(right)
)(left)
)(h => t => pair(h)(t))
)(_ => yes)
)(p => p(_ => r => r))
)(p => p(l => _ => l))
)(l => r => f => f(l)(r))
)(b => b(_ => no)(_ => yes))
)(unit)
)(_ => f => f(no_use))
)(f => _ => f(no_use))
)(unit)
)(_ => _)
)(f => (x => f(n => x(x)(n)))(x => f(n => x(x)(n))))
));
function natural(n) {
return n(i => i + 1)(0);
}
function array(lt) {
let unit = _ => _;
let no_use = unit;
let yes = f => _ => f(no_use);
let no = _ => f => f(no_use);
let when = unit;
let pair = l => r => f => f(l)(r);
let left = p => p(l => _ => l);
let right = p => p(_ => r => r);
let nil = _ => yes;
let con = h => t => pair(h)(t);
let head = left;
let tail = right;
let is_nil = l => l(_ => _ => no);
let isEmpty = is_nil;
function arr(acc, l) {
return when(isEmpty(l))
(() => acc)
(() => arr(acc.concat([natural(head(l))]), tail(l)));
}
return arr([], lt);
}